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ABSTRACT. A study is made of the surface waves in a higher order visco-elastic solid involving time

rate of change of strain and stress under the influence of gravity. A fairly general equation for the wave

velocity is derived. This equation is used to examine various kinds of surface waves including Rayleigh

waves, Love waves and Stoneley waves. It is shown that the corresponding classical results follow from

this analysis in the absence of gravity and viscosity.
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1. INTRODUCTION
Considerable literature including Bullen [1], Flugge [2] and Stoneley [3] is available on the theory

of surface waves in an isotropic homogeneous elastic solid medium. However, the effects of gravity,

viscosity and curvature, although important, are not included in the classical problems. Biot [4] has

first investigated the effect of gravity on Rayleigh waves on the surface of an elastic solid based on the

assumption that gravity produces a type of initial stress of hydrostatic in nature. Subsequently, Biot’s

theory has been used by several authors including De and Sengupta [5,6] to study problems of waves

and vibrations in solids under the initial stress in various configurations. Further, Sengupta and his

associates [7-9] have made an attempt to study the problems of surface waves in solids involving time

rate of strain and viscosity. In spite of these studies, relatively less attention has been given to surface

wave problems in a higher order visco-elastic solid involving time rate of strain and stress under the

influence of gravity. The main purpose of this paper is to study such problems. A fairly general equation
for the wave velocity is derived. This equation is utilized to examine various kinds of surface waves

including Rayleigh waves, Love waves, and Stoneley waves. It is shown that the corresponding classical

results follow from this analysis in the absence of viscosity and gravity.

2. FORMULATION OF THE PROBLEM AND BOUNDARY CONDITIONS
Let Mt and M2 be two homogeneous general visco-elastic solid media involving time rate of strain

and stress of higher order in welded contact under the influence of gravity at their common surface of

separation. We suppose that the media are separated by a plane horizontal boundary extending to



72 T. K. DAS, P. R. SENGUPTA AND L. DEBNATH

infinitely great distance from the origin, M being above M. We introduce a set of orthogonal Cartesian

coordinate axes Oxx3 in the semi-infinite isotropic visco-elastic media, with the origin at the common

bounda surface and the x-axis is normal toM. We consider the possibility of a type ofwave travelling

in the direction of 0x in such a manner that the disturbance is largely confined to the neighborhod of

the bounda and at any instant all panicles on any line parallel to 0x2 have equal displacements. Hence

the wave is a surface wave and all partial derivatives with respect to the coordinate x2 are zero. Then

the components of displacement u and us at any point may be expressed in the form

u3=+- (2. lab)ut Ox Ox3 Ox Ox

where 9 and are the functions ofx,x and and

Out Ouz Ou Ou Ou
Ox

Thus the introduction of the functions 9 and enables us to separate out the purely dilational and

rotational disturbances associated with the components u and ua. e component u, of coupe, is

associated with purely distoional movement. us9, and uz are associated respectively with P-waves,
SV-waves and SH-waves, as used by Bullen ].
e stress-strain relations are

Dno, DxA,i + 2De, (2.3)

where

.o Ot -o Ot .o Ot

where 0, and are the elastic constants and, k and (k 1,2 n) are the effects of viscosity,

e,i is the strain tensor and 6i is the onecker symbol.
e displacement equations of motion in the higher order general visco-elastic medium, under the

influence of avity, are

OA Ou
(Ox +D,) +D,V=u, + pgDn pD, (2.5)

uDV=u pD,, (2.6)

#k du #=ux
(2.7)

where p,q,,, ,(k -0,1,2 ,n) denote the properties e medium M and those with dashes the

properties of the mediumM2. Substituting (2. lab) in equations (2.5)-(2.7), we obtain the wave equations

inM satisfied by , and u2, as

= ,v’ + g (2.8)
Ot dx

O-sV-g (2.9)
Ot Ox

Ou sVU (2.1 O)
Ot

where
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v;’,=(k + 2t,)/p. v.-t/p (2.1,,)

and

=,o V2 o* O*
V

and similar relations inM with p, q,, k,, t, replaced by p’, q’,, ’,, U’, and so on (where k O, 1,2,..., n).

The boundary conditions are

(i) e components of displacement at the boundary surface between the media Mt andM must

be continuous at all times and distances.

(ii) The stresses oxt, oxe, oxx are

+- (a.l)
OxOx Ox Ox

au (2.14)

, 0% ] (2.15)D,o DVZ, + 2Du +
OxOx )

and similar expressions for Mz, across the boundary surface between M and Mz must be continuous al

all times and distances.

3. SOLUTION OF THE PROBLEM
To solve equations (2.8)-(2.10), we put

(n.,q t)
(, W, u,_) [g(x3), gp(x,), a=(x3)]e

for medium Mt and similar solutions for M:,, the functions , , a being replaced by ’, ’, a’.
Introducing (3.1) in (2.8)-(2.10), we have for the medium M,:

d

where

(3.2)

(3.3)

(3.4)

,.0 ..0 -o

Similar relations for M2 can be obtained by replacing , , fi:,, rh, Vr, V,s, rl, V’r, V,s, , ,, 9 by the

same symbols with dashes. Here p’, rl’,, .’,, ’, (k 0,1, 2 n are the physical properties of the medium
g.

We assume that ,p and u3 represent exponentially decaying solutions in the mediumM as x3 oo

so that they can be expressed in the form:

t A,e-’’ +A e e (3.6)
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P B e + B e e (3.7)

,,,v, e,O,,-, (3.8)u. Ce
-*A/C-

and similar solutions inM can be obtained replacing , ap, u2,A,A2, B,B2, C, rl, V;s, , ., the same

symbols with dashes in solutions (3.6)-(3.8). ltere and t’ (j 1,2) are respectively the roots of the

equations

and

where

(3.9)

% igrll(to:’ ";V,s,) 4, ie, n/(C ’i V,s’/’q,’) (j 1,2)

In evaluating quantities like qq= - and V’I Zto2,tl/, the root with positive real part must be taken

in each ease.

Using boundary conditions (i) and (ii), we obtain

[1-ictlQt]A + [1 ictQ2]A:, [1 +ia’iQi]A +[1 +icQ’]A (3.1 la)

C -C’ (3.11b)

[ /Qda /[c / iQda-[a;-Qi]al /[-Q’da’ (3. c)

* (1 +Q)ai}Atp(Vsh]k)[{2iQt + + {2iQ + (1 + Q)}A]

p’(v%’)[{-2iQ’ +(1 + Q’x)’ + {-2iQ’z +(1 + Q2)}A’] (3.1 ld)

%c (( "’ -(p)[{VQ- 1) + 2V(1- iQ)}A +{VgQ2* 1) + 2V(1- iQ)}A]

-(p’’)[{V(Q- l)+ EVj(1 +i’Q)}A + {V(Q2-1)+ EVj(1 +iQ)}A]. (3.11

It follows from equations (3.11b) and (3.11e) that C =C’-0. Thus there is no propagation of dis-

placement u2. Hence there are no SH-waves in this case.

From equations (3.11a), (3.11c), (3.11d)and (3.1139, we eliminate the constants A t, A2,Ai, A, to

get equation for the wave velocity in determinant form

M,,I- o, (i,j 1,2,3,4), (3.12)

where
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and where m 1,2.

I1 [1 t(t,,Q,,,], M, ,,.. -[ + t,t.,,,Q,,]

M-, [,t,,, + Q,,], M. ,,,... -[,t’,,, -t Q,’. ]"

M (pV;.hl)[2,O,, + (I + Q,)’:,,],

M (p/rl) V,’}(Q,-. 1)+ 2v;.(l i,t,,Q,,,)],

M,, (-p’/q’)[V;’(Q I) + 2v,’.."( + i,t’,.Q’,.)]

Equation (3.12) gives the wave velocity for the surface waves in the common boundary, and the

strain rate and the stress rate of higher order in the presence of gravity and viscosity are included in

(3.12).

4. PARTICULAR CASES

(i) Rayleigh Waves
In order to investigate the possibility of Rayleigh waves, we take the plane boundary as a free

surface with M2 replaced by a vacuum. Obviously, there are no SH-waves in this case. In view of

(3.1 ld) and (3.11]), we obtain

{2iQ +(1 + Q)cq}a + {2iQ2 +(1 +Q_)ct2}a2-o, (4.1)

and

{V(Q- 1)+ 2Vs(l -icqQ)}A + {v(O- 1)+ 2v’.(l -icra2)}A2-O (4.2)

Eliminating the constantsA and A: from equations (4.1)-(4.2), we get

IM;,I 0 (i,j 1,2) (4.3)

where

Mi,..[2iQ, +(l +Q,.)ct,]. M’:z,.=[V(O, -1)+ 2V(1-ict,Q,)] (r-l,2). (4.44b)

Equation (4.3) is the required wave velocity equation for visco-elastic Rayleigh waves including the

strain rate and stress rate of higher order under gravitational field. When the effects of viscosity and

gravity are neglected, this equation reduces to the classical result as discussed by Bullen ].
(ii) Love Waves

In this case we consider a layered semi-infinite medium in whichM is bounded by two horizontal

plane surfaces at a finite distance H-apart, whileM remains infinite as it was. In this case, we consider

the displacement component u only.

For the medium M:, we write down the full solution, since the displacement in M:, may no longer

diminish with the increasing distance from common boundary x3--0 and for the medium M the

solutions are the same as it was in the general case.

Therefore, for the medium Mz we write

-...V’,-,z.;’’;;" e,(,-,)"N’n-’n’’/v;; C e (4.5)
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where the restriction that the real part of vfrl2- tOZrl’/V;, is positive is not rcqutred for M.

In this case the boundary conditions are

(i) u:, and o3:, are continuous at x3 0 and (ii) o’3,_ 0 at x3 -//.

Applying these boundary conditions and using (3.8) and (4.5), we find

-"V’,, -o,:,,; "q;-Cte -C2e =0.

Eliminating C, C’ and C’2 from the equations (4.6)-(4.8), we obtain

(4.7)

(pV’/’q)V/1-cZrl’dV’2s +(p’V’:z/q’)V’(cZrl,’/I/’) tan,lHVCcZq’/vS -0 (4.9)

where c coal. This is the required wave velocity equation for higher order visco-elastic Love waves

involving the strain rate and stress rate under the influence of gravity. It is important to note that l,ove

waves are not affected by gravity but by viscosity. When q0 and q, rl’, Z., X’-la, la’, 0

(k 1, 2,..., n)then equation (4.9) is in agreement with the corresponding classical result [1] in a perfectly
elastic medium.

(iii) Stoneley Waves
In the classical theory, the Stoneley waves are a generalized from of Rayleigh waves propagating

along the common boundary ofMt andM:,. In the influence ofgravity, Stoneley waves along the common

boundary of the general visco-elastic solid media M and M:, involving the strain rate and stress rate of

higher order, are therefore determined by the roots of the frequency equation (3.12). In the absence of

these effects, this equation also agrees with the corresponding classical result.
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