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ABSTRACT. An investigation is made to study the diffraction of a train of time harmonic

progressive waves propagating along the surface of separation of two superposed fluids which are

laterally unbounded, the upper fluid being extended infinitely upwards, the lower fluid being of

finite depth with sand ripples at the bottom. The first order correction to the velocity potential

for the problem of diffraction of interface waves in the presence of bottom deformation is

obtained by integral transform technique after introduction of a linear frictional term in the

kinematic boundary condition at the surface of separation following Lamb (1932), and the

reflection and transmission coefficients are estimated for a patch of sand ripples.
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1. INTRODUCTION.
Gorgui and Kassem [1] studied generation of short internal waves produced by a cylindrical

wavemaker at the surface of separation of two inviscid fluids. The studies of Gorgui and Kassem

[2], Rhodes-Robinson [3] on the generation of time-harmonic waves at the surface of separation of

two superposed fluids due to various types of basic singularities provided interesting results in the

theory of infinitesimal wave motion at the interface of two fluids.

When a train of surface waves is propagating in a laterally unbounded ocean over an

obstacle or sand ripples at the bottom, it experiences reflection and transmission, over the

deformed bottom which is interesting and important to study for both coastal protection as well

as for the protection to the growth of sand ripples. Miles [4], Mandal and Basu [5] estimated the

reflection and transmission coefficients when a train of surface waves propagating along the

surface of a single layer of fluid is incident obliquely on a cylindrical deformed bottom.

In the present paper an attempt has been made to determine the transmission and reflection

coefficients for the diffracted waves along the interface of two laterally unbounded superposed
immiscible fluids in which the upper fluid is extended to infinity upward while the lower fluid is

of finite depth below the mean free surface with a small deformation in the form of a long
cylinder in the lateral direction. By following Lamb [6], Davies [7] developed a method to solve

this problem for a single layer of fluid by applying the Fourier transform technique. In the

present paper, the method developed by Davies [7] has been used to solve a coupled the boundary
value problem.
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2. MATHEMATICAL FORMULATION OF THE PROBLEM.
We now consider two incompressible, inviscid, homogeneous immiscible superposed fluids of

densities P,P2(Pl > P2) with the lower fluid of density pl. The mean surface of separation is

horizontal in equilibrium and taken as xz-plane, y-axis pointing vertically downward. The lower

liquid occupying the laterally unbounded region -cx < x < c,0 < y < h + ’(z) while the upper

fluid of density p in the region y < 0, -o _< x _< cx.

The bottom of the ocean with small cylindrical deformation is described by y h + (x),
where

((z) =0 for -oo<z_<L

=yb(z) for L,_<x_<L (2.1)

0 for L < z < e

and ((x) together with its derivatives are assumed to be very small.

We consider the motion under gravity of the two layer of fluids when a train of progressive
waves is propagating along the surface of separation of two fluids. The motion is assumed to be
irrotational and simple harmonic in time so that it can be described by the velocity potential

Re{’(x, y, t)} for lower fluid and Re{(x,y,t)} for the upper fluid, q and satisfy following
equations and boundary conditions

7 q 0, 0 < y < h + (x), (2.2)

V2@ =0, y<0, (2.3)

q I, on y 0, (2.4)

q’,,- gq s(,, + g$) on y O, (2.5)

qz 0 on y h + (x), (2.6)

V --0 as y-- o, (2.7)
P Let and be the effect ofwhere ’fi" denotes the inward drawn normal to the bottom, .

the bottom deformation in q and so that

q o + , @=$o+ (2.8ab)

where o, @o are prescribed first order velocity potential and , are second order perturbed
velocity potential for lower and upper fluids. The prescribed value of o and @o are given by

’o
csh k (h- y) (kox nt) (2.9)sinh k h

cos

-X 1o1 o (o-.t)

along positive z-direction where ko > 0, A is a known quantity depending on n, ko, g and h,k
being the unique real zero of

K(cosh k h + s sinh k h) (1- s) k sinh k h 0 (2.11)

where n is the circular frequency.
As this wave train is normally incident upon the deformation, it experiences reflection and
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transmission over the deformation and the motion is governed by the set of equations (2.2) to

(2.7), then and /, satisfy set of equations

X7 =0

2=0

(,,- g) ,,-g
o G() +()o+ 0

where o and (z)is given in (2.9) and (2.1).

in 0 _< y _< h, (2.12)

in -oc < y _< 0, (2.13)

on y 0, (2.14)

on y 0, (2.15)

on y h, (2.16)

By the use of (2.1) in (2.16), the bottom boundary condition leads to the following relations

for -cx3<x<L

-U(x,t) for LI<x<L2

0 for L < x < c

at y h (2.17)

where
U(x,t) -((X)ouu(x,h t)+ (x(x)(ox(x,h t). (2.18)

We obtain a solution which corresponds to outgoing waves in the limit when it exists i.e., the

asymptotic behavior of (x, y, t) and (x, y, t) as x - + o.

3. METHOD OF SOLUTION.
To solve the boundary value problem (2.12) to (2.16) we use Fourier transform defined by

](f,y,t) / t) ev f(x,y, dx, (3.1)

f (, y, t) e-’ d. (3.2)f(x,y,t)=
Following Lamb [6], we introduce a linear frictional term in (2.15) to obtain

s [tt- g] eft-g +# (3.3)

where # is very small frictional parameter.

Then application of the Fourier transform to the set of equations (2.12) to (2.14), (2.16) and

(3.3) gives

.-=0.-e 0

1 [ U(x, t)e’ dx T(, t)

Equations (3.4) d (3.5) possess solution given by

A(,t) cosh[[y+ B((,t) sinh[[y,

in 0 < y < h, (3.4)

in y < 0, (3.5)

on y 0, (3.6)

on y 0, (3.7)

o . (3.s)

(3.9)
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b({, t)e I{l.

Boundary conditions (3.6)and (3.7)give the relation among A(,t),B(,t),T(,t)as

A({, t) sinh h + B(, t) sinh g h 7"

We set

A,(,t) + I At(,t)- s Bu(,t g (1 s) B({,t) O.

AII A A

Ba B2
T T2

cos nt )sin nt

Using (3.11), (3.12) and (3.13) we have the solution given by

where

[(A coshlly + n sinhlly) cos nt

+ (Az coshlglY + Bz ,inhlgly) sin nt] e-’Xd,

[(B co,hilly / ainhlly) co nt

+ Bz (coshllY + sinhllY) sin nt]

(pT() + qT2() A2() g()Aa()- (:)1 (Pz+q2) vgll
(pT2()-qT())

(p2 _{_

B(,) rt2Al()- lnA2() nAl() + nZA()
,(,) Bz(,)

,() sn- g(1 s)]{I p --#- cosh h + sinh g h

q - coshl(lh.

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.16)

Now to determine and we evaluate the integrals (3.14) and (3.15) by the method of

contour integration. The singularities of (3.14) and (3.15) arise from the terms

p2 + q2 0. (3.17)

Using the complex variable z + ix, the singularities are z zn, say which lie near to the

position z z0 given by p 0 as q t where/ is very small. These singularities z0 are given
by

(1 s)zo K(cothzoh + s) (3.18)

The equation (3.18) has zeros at z0 4- k0 I.
In addition, there exists an infinite number of poles 4-ilxol on the imaginary axis

satisfying (3.18) as
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i(1 s) lX0 K(i cot IXo h + s) (3.19)

Set zt, z0 + a# where a can be determined by equating the terms 0(#) in the equation (3.17) as

a :k in
(Ks- (1 S)Zo)

f(Zo (3.20)

where

f(Zo) (1 s)Kg n2hK (zo)h Ks --(1 S)Zo). (3.21)

So each of original poles at z z0 is replaced by two poles upon the introduction of linear

and R" respectively related tofrictional terms. Let the residues of integrals (3.14) (3.15) be R,
lower and upper fluids. Hence

n, R:t, [{(A1. cosh zy + B2. sinh zy) zpcs nt

+ (A2. cosh zy + B=. sinh zy) lzp sin nt} e-""x] (3.22)

cos ntn R: [{B.(o z +i z)l

,ZpX]sin nt} e (3.23)+ B.(cosh zy sinh zy) J,p
where

and

(z)
Ai. -- T,, B,. "0 T,

R*
g sinh zh

’,- H(zp)

H(z) =- (1 ) n=z

i= 1,2

(3.24)

For calculation of asymptotic limit of (x,y, t) as x-, the contour integration is taken in the

upper half plane, and the result is obtained by summing up the residues at zvl ko + ipto, and

z2 ko + ipto, o > 0. In the limit p--0, these terms give rise to the outgoing waves from the

region of bed with deformation x- and is given by

=O

+ ,(o + ,t)] 3.25k

where W(y)
cosh ko(y- h) (3.26)

koh + (1 s) gk sinh koh

Again for calculation of asymptotic limit of (x,y,t) as x-cx the contour of integration is taken

in the lower half plane and the result is obtained by assuming

z% k0 i#to, z4 k0 ipto, (to > O)

and summing up the residues at z% and zt, ve have

(x, y, t) 2ri (np
3 0
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,(kox nt
(T, -’(%’-"’j (3.27)

where 15Z,(y) is given by (3.26).
For calculation of gz(x,y,z) as x--cx, the contour is taken above the real axis and

considering residues at z, and z,2 we get

-’(kx+"t) ’(kx+"t)] (3.28)2(x,y,t) + iW2(y (T + iT) oe + (T T) _oe

where W(y) e kl u
(3.29)

h + (1 s) g ko sinh koh
Similarly when z-c, taking the contour below the real axis and summing up the residues at %3
and ztq we have

(z,y,t) -iW(y(T, + iT) -o e’(k*-"t) + (T1- iT2) oe-’(k’-"t)] (3.30)

where W2(y)is given by (3.29).
We are interested in finding out the reflection and transmission coefficients due to the

presence of sand ripples

Tffo(Z, y,t as x---,

As (3.31)
Ro( x, y,t) as x-

To(X, y, t) as x-
and (3.32)

Ro( z, y, t) as z---,

where o and @o are given in (2.9) and (2.10) and and as x--- -4-cx in (3.25) to (3.30).

T (z, y, t) (x, y, t)
o(,,t) o(- ,,t) (3.33)

and similarly as x- we get

R ( ,, t)
0( x, , t)

(- ,,t)
o( x, y, t) (3.33)

Hence T and R can be expressed in terms of ko, h,n from (2.9), (2.10), (3.25), (3.27), (3.28),
(3.30) and in U(x,t) given in (2.18).
4. APPLICATION OF THE THEORY.

We prescribe the bed form due to presence of sand ripples as

Yb(X) b sin(x + ) in L <_ x < L (4.1)

where is a constant phase angle. For continuity of bed elevation we take

L 8171 ()/, L2 (sr )/g (4.2)

where 81 and s axe integers so that there are (s + s,z)/2 ripples of wave number g in the patch.
Then from (3.25) and (2.10) as x--

(2o/) [(- 1)" sin(kox + at- 2koL)(x, y, t) A’WI(y (2ko/e)2
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1)’: sn(koX + at 2koL,)j,’ A’ bko (4.3)

and as z-oc from (3.27) and (.9) we have

(x,y,t) A’W,(y)(2k/)[(- 1)’l -(- 1)"] sin(kx- nt) (4.4)

In (4.3) and (4.4) we see that intcraction of incident progressive waves (2.9) with the bed forms

(4.1). Ifwetake=0andLI=L, asx-

(0/)(x,y,t) 2A1WI(y)
(2k0/) (- 1) sm(2koL) cos(koZ + nt) (4.5)

a3:ld as x--(:x:)

(x, y, )=0

Similar results for can be obtained from (2.10), (3.28) and (3.30) as x-- 4-cx.

Ultimately R has been calculated for integral number of ripples as

2bkR-
(l_s)inh2]coh 1)’1 (--q)

(4.6)

(4.7)

and T 0. (4.8)

5. CONCLUSION AND DISCUSSION.
The expressions (3.25), (3.27) and (3.28), (3.30) represent the reflected and transmitted

velocity potential for lower and upper fluids respectively. By taking s 0 the results obtained by
Davies [7] for a single fluid can be recovered. The results (4.5) and (4.6) explain the fact that

there is no disturbance in the perturbation solution on the down-wave side of the ripple patch,
but there is a reflected disturbance on the up-wave side. The result (4.5) also explains that the

size of the reflected wave i.e., Wl(y depend on s Pl/P the density ratio of two fluids. The

result (4.7), (4.8) give an estimate of reflection coefficients when there are integral number of

ripples on sea-bed. One can also include surface tension at the surface of separation of the fluid.
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