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ABSTRACT. For nonlinear parabolic evolution equations, it is proved that, under the assumptions oflocal

Lipschitz continuity of nonlinearity and the dissipativity of semiflows, there exist approximate inertial

manifolds (AIM) in the energy space and that the approximate inertial manifolds are constructed as the

graph of the steady-state determining mapping based on the spectral decomposition. It is also shown that

the thickness of the exponentially attracting neighborhood of the AIM converges to zero at a fractional

power rate as the dimension of the AIM increases. Applications of the obtained results to Burgers’

equation, higher dimensional reaction-diffusion equations, 2D Ginzburg-Landau equations, and axially

symmetric Kuramoto-Sivashinsky equations in annular domains are included.
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1. INTRODUCTION
In the recent decade there have been rapidly expanding research progresses in the global dynamics

(that is, the long time behavior of solutions) of nonlinear evolution equations with some sort of

dissipativity. The existing theory consists of the existence of absorbing sets, the existence of a compact

global attractor of finite Hausdorff and fractal dimensions for many typical parabolic and hyperbolic

equations, the existence of inertial manifolds for some parabolic equations and nonlocal beam equations

(mostly known only for the one space dimension cases), and the existence of approximate inertial

manifolds by a variety of approaches. We refer to Hale and Temam [2] as general references.

Consider a model equation, which represents different semilinear parabolic evolution equations

under different assumptions, of the following form

du- +Au+R(u)=f, tz0, (1.1)

u(O) uo.

Suppose that the global solution exists in a strong or weak sence in a Hilleret space W, and is denoted by
S(t)Uo u(t, Uo), > 0, the nonlinear continuous mapping S(t), > 0, is called the solution semigroup, ot

semiwhich we shall not assign a different notation) generated by (1.1). An inertial manifold Pt
for this evolution equation is a subset in W such that the following conditions are satisfied: (1) Pt is a

finite dimensional and Lipschitz continuous manifold. 2) PI, is positively invariant under the semiflow

S(t), i.e. S(t)Pt.---I, for z 0. (3) PI. attracts all the trajectories of the equation (1.1) at a uniform

exponential rate, i.e. there exists a constant v > 0 such that for any bounded set B in H, there is a constant



K(B) only depending on B and the distant,, from u(l, Uo) to the manifold 1. decays exponentially,

dist (u(t, Uo)" t K(B)e-vt for all >0, and any Uo : B

The significance of inertial manifold, if exists, is now well known since it provides a finite

dimensional system of ODEs on the inertial manifold, called the inertial/’orm, which lends us to carry on

various finite-dimensional analysis on the global dynamics of the original infinite dimensional system

(I. !). Recently it has been found, cf. Taboada and You [31, that the inertial manifold theory has an impact

on the stabilization of certain nonlinear elastic systems by finite-mode feedback control.

Due to the technical restrictions involved in the currently existing theories of inertial manifolds,

typically the spectral gap conditions, the spectral blocking conditions, the large damping condition, or the

nonlocal nonlinearity conditions attached to various existence theorems, for many nonlinear higher

dimensional parabolic and hyperbolic evolution equations with more or less dissipativity mechanism, the

challenging question of whether an inertial manifold exists or not remains unanswered.

As a modest and useful substitute to inertial manifolds, the concept of approximate inertial

manifolds (briefly called AIM below) was introduced. In general, an AIM is a subset 1, in the state space

W, such that

I) M is a finite dimensional and Lipschitz continuous manifold,

2) M attracts all the trajectories into a thin neighborhood at a uniform exponential rate,

3) for any trajectory {u(t,Uo)" a0} there is a tracking orbit {v(t): " 0} on this manifold, which is

governed by a rather simple equation, such that after a transient period tl(B) (unitirm for uo in a bounded

set B) the error Ilu(t,Uo) v(t)ll is uniformly bounded and decay exponentially to zero.

The existence and construction of AIM are investigated by three major methods: (I) The nonlinear

Galerkin approximation method, cf. Temam [2, 4], Foias et al. [5l, and Marion [6l. (2) The Gamma

method, cf. Sell [7]. (3) The steady-state determining mapping method which was initiated by Foias et al.

[8, 9], and developed by Titi 10, ], and Jolly et al. 12].
It is worth mentioning that in Titi 10, the approximate inertial manifolds of the form I,s

Graph (s) with s the staedy-state determining mapping was introduced to 2D Navier-Stokes equations

with Dirichlet and periodic boundary conditions. Moreover, in Titi the successive approximation was
used to produce a sequence of explicit approximate forms of the mapping s. These ideas were applied to

the ID Kuramoto-Sivashinsky equation with the periodic boundary conditions by Jolly et al. 12].
This work is to generalize the theory of existence and construction of AIM for the abstract

nonlinear parabolic evolution equation, ’l. l) via the approach of using the steady-state determining
mappting, under a unified framework ofessentially two fundamental assumptions:

First, in the energy spave V there exists an absorbing set for the concerned semiflow S(t), which is

ensured by certain typical hypotheses made in this paper or some alternatives elsewhere. Second, the local
(regular) Lipschitz continuity of the nonlinear part R(u): (cf. Assumption (A2))

R(u)- R(v) : C2(ll u II, v )11 u- v II, for u and v V,

which automatically implies that the crucial weak monotonicity (3.10) of the truncated nonlinearity F(u) is

satisfied. The main results of this work are stated in Theorem 5.4, of which the essence can be described

briefly as: The nonlinear evolution equation (1.1) satisfying the aforementioned two assumptions has AIM
in the form of the graph of steady-state determining mapping, and the size of the attracting neighborhood
ofsuch AIM shrinks to zero at an explicit fractional power rate.

The work in this paper features the methodology, the decreasing rate estimates of the attracting

neighborhood thickness, and the extensive applications of the results (in Theorem 5.4 and Theorem 5.6).
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Specifically, the methodology in proving that the graph of the steady-state determining wnapping

forms AIM is based on the weak mot,otonicity (3.10) (which is actually a consequence of the local

Lipschitz continuity combined with the dissipa|ivity, rather than a new condition) and on the localizing and

pasting technicality in Section 4 and Section 5. This technicality consists of the intervention of an x-

stationary (or semi-stationary) intermediate equation (4.2), the local estimates (5.17) and (5.19) in

breaking terms, and finally the subinterval optimization. Hence the methodology is independent of the

concrete or unique properties possessed only by Navier-Stokes equation or by some other equations.

The main results in Theorem 5.4 also include the decreasing rote expressions (5.15): J() l/la 3/2

in H and (5.16): N(la) l/la in V of the exponentially attracting neighborhoods of the AIMs. The theory

developed in this work is extensively applicable to various dissipative nonlinear parabolic equations,

including the 2D Navier-Stokes equations. For different exemplification, in this paper, the applications of

this general theory to Burgers’ equation, higher dimensional reaction-diffusion equations, 2D Ginzburg-

Landau equations, and axially symmetric Kummoto-Sivashinsky equations are presented in detail. It is

also worth mentioning that the obtained results can be applied to the class of evolution equations studied

independently by Smiley 13].
The rest of the paper is organized as follows. In Section 2 the assumptions, the global existence

and regularity of solutions, and the existence of absorbing sets are presented. Section 3 deals with the

truncation, the decomposition, the sleady-state equation, and the existence as well as the Lipschtz

continuity of the determining mappings. In Section 4 three technical lemmas involving the semi-stationary

intermediate equations are proved. The main theorems on the existence and properties ofAIM are provided

in Section 5. Finally in Section 6, applications of the obtained results to four different types of nonlinear

parabolic equations are illustrated.

2. SOLUTION SEMIGROUP AND ABSORBING SETS
Let H be a real separable Hilbert space and denote its norm and inner-product by I1 and (’,’)

respectively. We make following assumptions on the linear operator A and the nonlinear part R(u) and f in

the abstract evolution equation (1.1).
ASSUMPTION (AI). Assume that A: D(A)(c H)--, H is a closed linear operator, and it is positive

definite and self-adjoint, and has compact resolvent..

By this assumption the spectrum set o(A) of A consists of countably many positive eigenvalues

.i: 1, 2 }, each repeated up to its finite multiplicity and lim ,i -’+ as i---, ,x,. The corresponding

complete and normalized eigenvectors ofA are denoted by ei: 1, 2 which form an orthonormal

basis for the space H. For any number s " 0, the fractional power operator As: D(As) H is well defined

by the spectral mapping. In particular, we define another real Hilbert space V by V- D(AI/2) with the
norm v IAl/:vl and the induced inner-product ((., .)). Denote by .o the minimum eigenvalue of the

operator A, ho > 0. Note that due to Assumption (AI), A generates an analytic contraction semigroup

denoted by {T(t), :," 0 }.
ASSUMPTION (A2). R(.) is a nonlinear mapping from V to H and also from D(A) to V, satisfing

the following conditions,
R(u) (Co(I u I) + :il u )11 u II, V u V,
R(u)llCl(lul, Ilull)lmul, Vu D(m),
R(u) R(v) C:(ll u II, v II)11 u- v II, V u, v V,
R(u)- R(v)II C3(I mu I, Avl )1 mu- Av I, V u, v z D(A),

(R(u), u) > ,- I1 u 2, V uz V,
where : > 0, ’ e R, and 0 < I < o are constants, Ci(...), 0, 1, 2, 3, are nonnegative continuous

functions increasing with their respective variables. Besides assume that fe V is a time-invadant function.
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REMARK 2.1. The above assumption (A2) on the nonlinearity R(u) is only a typical set o!

conditions under which one can work out the existence of global solutions over [0,oo) and the existence o|

absorbing sets. There are certainly alternative sets of conditions which can replace (A2) in different

settings for the same purpose: obtaining the global dissipativity in terms of the absorbing property. After

the stage of showing the absorbing property, (A2) plays no more role except the first and third inequality

conditions of in (A2).
For any UoE H, the concepts of mild solution, strong solution, and classical solution of the

evolution equation I. l) are provided in Pazy 14]. We refer to Temam 2 for the concept of absorbing set

and absorbing property. Following is the main result in this preliminary section.

THEOREM 2.2. For any Uo E V, there exists a unique classical solution u(.) of the evolution

equation I. such that

u E C([0,oo); V) N CI((0,oo); H) t C((0,oo); D(A)). (2.1)

Moreover, there exists an absorbing set in V for the semiflow generated by (1. I).

PROOF. We shall use the two basic inequalities, cf. Pazy [14], related to the regularity of an

analytic semigroup {T(t), > 0 }"

AaT(t) IIH._, H s Ma -a e-tot, for all > 0,

T(t)x x Bat all Aax II, for all xe D(Aa) and > 0,

(2.2)

(2.3)

where 0s at s 1, Ms and Ba are constants depending on at, and to satisfies 0 < to < )o. Below we sketch

the proofof this theorem by several steps.

STEP 1. The local existence and uniqueness ofa mild solution on some interval [0, r]. This can be

done by considering the integral equation

v(t) A1/2T(t)Uo + A1/2T(t s)[f- R(A-1/2v(s))]ds, for t[0,r], (2.4)

and using the contraction mapping and fixed point argument to choose small "r > 0 such that there exists a

unique strongly continuous solution v(.) of the equation (2.4), so that u(t) A-l/2v(t), tz [0,r], is the mild

solution of (1.1) and u : C([0,r]; V).
STEP 2. The regularity of the solution u(.). We want to show that u(t)e D(A) for te(0,r]. By the

mild solution formula

u(t)-" T(t)Uo + j" T(t- s)[f- R(u(s))lds, for tE[0,r],
0

and the property (2.2), we need only to consider the nonlinear term

g(t) j" T(t- s)R(u(s))ds j" T(t- s)[R(u(s)) R(u(t))]ds + j T(t- s)R(u(t))ds,
0 0 0

in which

(2.6)

A T(t-s)R(u(t))ds IT(t)- lR(u(t)),
o

(2.7)

and
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f T(t- s)lR(u(s)) R(u(t))]ds lim e--,0 h(t),
0

where 0 < e < t,

and

he(t) f T(t- s)lR(u(s))- R(u(t))]ds eD(A),
0

lim g0 mhe(t) lim e--.0 fxI0.t-el(s)AT(t s)[R(u(s)) R(u(t))]ds

f AT(t- s)IR(u(s)) R(u(t))lds,
0

(2.8)

where the convergence in (2.8) follows from the dominate convergence theorem and

IXl0.t_el(s)AT(t s)lR(u(s)) R(u(t))ll const It- slb- lslb L(0,t),

which in turn comes from (2.2) and the local Holder continuity of the solution u, (the proof of the lattter is

based upon the basic semigroup properties (2.2) and (2.3), and omitted here), namely, there exist a

constant 0 < 5 < 1/2, and a constant C(r, Uo, f, 5) > 0, such that

Ilu(s) u(t)ll C(r, Uo, f, 5)Is- tl b Isl b, forO<s<tT.

Thanks to the closedness ofA, (2.8) implies that

j" T(t- s)[R(u(s)) R(u(t))lds eD(A).
0

(2.9)

As a consequence, (2.7) and (2.9) im, lies that g(t)e D(A) and that Ag(t) is continuous on [0,r].
Furthermore,by Theorem 4.2.4 of Pazy 14], this implies that u CI((0, r]; H).

STEP 3. The global Existence and absorbing property of solutions in H. We shall make a priori

estimates to show these two things together. First, assume that uo D(A). Then the corresponding local

solution exists in C([0,’r}; D(A)) tq cl([0,r]; H)and its fight H-strong derivative at 0 satisfies the

differential equation (1.1) for 0. Take the inner-product of the equation (1.1) with the solution itself,

we get

ld
2 dt u(t) 12 + II u(t) 2 151 u(t) 12 + ’ { u(t)) u(t) 12 + e-ll fl2, (2.10)

for all [0, Tin), the maximal interval of existence, with Tm Tm(uo), where we let 0 < e < (,o- 13)

and fix it, so that

d
i u(t)12 + (- 15)I u(t)12 21 v + 2e’ll fl 2. (2.11)

Integrating this differential inequality, we obtain

u(t) 12 exp(- (- I)t) uol 2 + Ko(f), fort [0, Tin), (2.12)
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where

Ko(O (- 13)1(2y + 2e-l] f]2) (2.13)

is a constant independent of Uo. Then by the denseness of D(A) in V and the approximation procedure with

the aid of continuous dependence property of solutions on the initial data, we can assert that (2.12) holds

for all the solutions with Uo c V. Hence, the solution claimed in STEP exists uniquely and globally on

[0, oo). Moreover (2.12) shows that

lim "uPt_,o lu(t)12 : Ko(f), (2.14)

which means that there is an absorbing set, e.g. the closed ball in H centered at the origin and of radius

Ko(fl+ 1.

STEP 4. The global existence and absorbing property of solutions in V. We shall use the same

procedure that first assume that Uo in D(A) and at last extend the integrated result to all Uo in V through

approximation. Thus, for Uo e D(A), take the inner-product of the equation (1.1) with Au(t) and use the

first two inequality conditions ofAssumption (A2) to obtain

d 12 2 12 122 dt u(t)II2 +lAu(t) 1R(u(t))l + 1 f + lAu(t)

122{Co(I u(t)I)2 + :211 u(t)112}11 u(t)II 2 + 1 f + Au(t)12,
(2.15)

so that

d u(t)II2 t)II u(t)II2 /I fl2, for [0,Tm), (2,16)

with

q)(t) 4Co(exp(- (Xo- IS)t) uol + qKo(0 )2 + 49211 u(t)II 2. (2.17)

From (2.11) through (2.13), we have

t+r t+r

fllu(s)ll2ds flu(t)12+(15+ 1) lu(s)12ds/(Ivl +1 flE)r

s exp(- (Ao- 13)t) + (O + l)(Xo- I)-ll Uol2 + KI(0,

for [t, t+r] in [0, Tm), where

Kl(f’) (l/2)Ko(f) + [(0 + l)Ko(f) + vl + Ifl2] r. (2.19)

From (2.17) it follows that

t+r

s)ds < d(r, Uo, f) (constant), for 0 : < + r < Tin. (2.20)

Apply the uniform Gronwall inequality to (2.16), we get

u(t + r)II2 exp (d(r, Uo, f)){ rl fl 2 + r’lKl(0

+ r "1 [1/2 + 05 + l)(Xo 15)ll luol 2 exp(- (Xo- 15)t)},

(2.21)
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for0 < t+r < Tin. Since > 0 can be fixed, say, re (0, 3 Tm). The above inequality (2.21) shows that

the solution u(t) remains bounded in V as + Tin. Therefore the solution claimed in STEP exists

uniquely and globally in V, in other words, Tm +oo. Moreover, note that

t+r

limt_,o fcp(s)ds K2(f), with K2(f) 4rCo(/Ko(f) )2 + 4c2r Kl(f), (2.22)

where the convergence is uniform for [Uo in any given bounded set. From (2.20) through (2.22) we have

lim suPt_, oo u(t)II m K3(0, with K3(f) --[r fl + r- KI(0] exp(K2(0). (2.23)

It means that there is an absorbing set in V for this semiflow, and the absorbing set can be a ball centered

at the origin and of radius p K3(01/2 + q, for any positive constant q. The proof of Theorem 2.1 is

completed.The proof is copmpleted.

REMARK 2.3. Concerning the monotone condition ofAssumption (A2):

(R(u),u) >_ y- 151 u 12, for all u V,

with 0 < I < , we note that if R(.) satisfies the following condition,

<R(u) R(v), u v) > 0, V u, v V and Ilu- vii > do, (2.24)

where do > 0 is a constant, then the aLove monotone condition is automatically satisfied. In fact, let mo
supllR(u)l" Ilu do}<. We have: i) for any u W such that Ilu I1 do,

(R(u),u) _>-IR(u)l lul - modoAo 1/2

ii) for any u V such that Ilu > do,

<R(u),u> <R(u)- R(0),u 0> + <R(0),u> >-IR(0)I lul - - IR(0)I2- lul2,

in which one can take e sstisfying 0 < e < o. Therefore the monotone condition of (A2) is satisfied with

the parameters 15 e and max{ -llR(0)12, modo%I/2}.
3. STEADY-STATE DETERMINING MAPPINGS

In this section we make some preprations to construct approximate inertial manifolds: truncation,

space decomposition, and define the steady-state determining mappings.

TRUNCATION. Fix a constant p > 0 such that p2 > K3(f), with K3(f) defined by (2.23). Define

a C scalar function 0(r): [0,oo) [0,I ], which satisfies the following conditions,

0(r) I, for 0 r < I,
0(r) =0, for rz 3,

0 0(r) I, and 10’(r)l I, elsewhere.

Let 0p(r) 0(2 with p being the fixed constant mentioned above. Define a new nonlinear mapping by

F(u) Op(ll u 2) R(u), for u V. (3.1)
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In the sequal we shall consider the modified equation:

du
dt +Au+F(u)=f’ t>0, u(0)=UoE V. (3.2)

By the result of STEP 4 in the proof of Theorem 2.1, specifically (2.23), the ball B(0;13) centered at the

origin and of radius 13 is an absorbing set for the semiflow in V generated by the equation (1.1). Therefore

this truncation that replacing (1. I) by L.2) preserves the long-time dynamics of the original equation

(1.1), since within the absorbing ball B(0;13) both equations are the same. But the new truncated

nonlinearity has following uniform properties in which Cl > 0 and c2 > 0 are two uniform constants:

IF(u)l c Ilu II, for any u EV, (3.3)
IIF(u)ll C IAu I, for any u e D(A),

IF(u)- F(v)l c2 Ilu- vii, for any u and v in V,
IIF(u) F(v)ll c2 IAu- mvl, for any u and v in D(A).

DECOMPOSITION. For any given positive number la > .o, there exist a nontrivial spectral

decomposition of o(A) and a corresponding orthogonal decomposition of the Hilbert spaces H and V:

+
o(A) ola(A) U o (A), (3.4)

H X + Y, (denoted briefly by X + Y if is relatively fixed),
V X + Zt, (denoted briefly by X + Z if la is relatively fixed),

where

+

ola(A) {o(A): 7, la} o (A) {Xo(A): k < ta}

XI Span{ei: < n()}, Y CIH Span {ei:i > n(la)}, and Zla CIv Span {ei: > n(/a)}, in which

n(t) max{i (integer): .i < la }. Let P: H X be the orthogonal projection and QH IH P. Then X
PH, Y QH, and Z QV. Apply the projections P and Q to the equation (3.2), we get two coupled

equations:

dx + Ax + PF(x + z) g= Pf, x(0) Xo Puo X, (3.5)xdt
dz + Az + QF(x + z) h Qf, z(0) Zo Quo Z. (3.5)zdt

DETERMINING MAPPTINGS. Consider the associated algebraic equation

Au + F(u)= f, (3.6)

which is called the steady state equation. It can also be decomposed as

Ax + PF(x + z) g, (3.7)x

Az + QF(x + z) h, (3.7)z

with x e Xt and z Z. Suppose that for any given h6 7_ and any xe Xt, the component equation (3.7)z

has a unique solution z, denoted by

z p(x,h), (3.8)
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then the solution of the steady state equation (3.6) reduces to the solution of the following equation,

Ax + PF(x + x,h)) g, in (3.9)

which is called, according to Chow and Hale 15 ], a bifurcation equation. The mapping : Xv Z Z
defined by (3.8), if exists, is called a steady-state determining mapping.

In order to study the existence and properties of such determining mappings that will be a tool in

contructing AIMs, we now emphasize an important consequent property derived from the uniform

Lipschiotz continuity of (3.3) as follows.

LEMMA 3.1. Under Assumption (A2)and the truncation (3.1),the truncated nonlinearity F(u)

satisfies the following weak monotonicity

(F(u) F(v), u- v) >- c2 Ilu- vii lu- vl, for any u, v e V, (3.10)

where c2 > 0 is the Lipschitz constant in (3.3).
PROOF. By (3.3) the truncated nonlinearity F(u) possesses the uniform Lipschitz continuity IF(u)

F(v)l c2 Ilu vii, for any u and v in V. Thus we have

if(u)- F(v), u- v) >- IF(u)- F(v)l lu- vl z- c2 Ilu- vii lu- vl, for u, v V.

This indicates that (3.10) holds.

THEOREM 3.2. For any la > (c2)2 and the decomposition (3.4) and (3.7) associated with this

there exists a Lipschitz continuous mapping q: X Z Z, such that

z-- x, h) (3.11)

is a unique solution of the equation (3.7)Z. Moreover, this mapping q has the following properties,

qxl, hi)- qx2, h2)
la- c21a 1/2

[c2 x- x2ll + la-l/21l hi- h2lll, (3.12)

p(Xl, hi)- p(x2, h2)II
1/2. c2

[c2 xl- x211 + lal/211 hi- hg_ Ill.

PROOF. Def’me a mapping G: D(A) Cl QV-- QV by

G: w Azw + QF(x + w).

(3.13)

(3.14)

where Az AIZ (the restriction ofA on Z). G is a densely defined operator in QV. We want to show that
G is surjective, i.e. Ran (G) QV. For any heQV, the equation Gw h is solvable if and only if the

following equation is solvable:

w (Az)-l[h- QF(x + w)l for w QV.

Define a mapping J QV QV by

Since we have

J(w) (Az)-llh QF(x + w)l.

J(wl) J(w2)ll (Az)’I IIL(H;V) QF(x + Wl)- QF(x + w2)

c2s (gz) IIL(H;V) c2 w- w211 = Wl" w211,

(3.16)

(3.17)
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where II(Az)-IIL(H.V) s In- 1/2 can be directly verified by the eigen-expansion. Since p I/2> c2, (3.17)

shows that is a contraction mapping so that it has a unique fixed point w for any given pair (x, h) E X
Z. Therefore (3.15) is solvable and the equation (3.7)Z has a unique solution z, denoted by (3. ).

Next we prove the Lipschitz continuity of this mapping q0: (x, h) z. Let zi q0(xi, hi), I, 2.

It holds that

(,u- c2P !/2)Izl z2l2 ’< (.u /2_ c2)Ilzl- z2ll Iz- z2l

IIz z2ll 2 + (QF(xl + Zl)- QF(xl + z2), Zl z2

s (A{zl z2), Zl z2) + (QF(xl + Zl)- QF(x2 + z2), Zl z2)

+ (QF(x2 + z2)- QF(xl + z2), Zl z2

(hi- h2, zl- z2) + c2 IIx x2111z- z21,

which implies (3.1 2) and 3.1 3):

]Zl -z2l
la c21 112

[c211Xl- x211 + iu-l/211 hi- h2 II1.

z-z211 [c2 x- x2 + IJ-/211 h h2 II].
p 1/2. c2

The proof is completed.

We call the mapping q0 obtained in this theorem as the determining mappingassociated with p.

4. TECHNICAL LEMMAS
In this section three lemmas will be established as intermediate steps toward the main result. First

we sketch the guiding procedure leadin,- to the construction of AIMs as follows. In fact we look for an

AIM in the form of

Ply Graph ,0(., Q0 {x + g(x, Q0: for all x: Xla], (4.1)

where p > 0 is to be chosen. Since an AIM needs not to be invariant, for the Bnite dimensional and

Lipschitz continuous manifold PIv defined by (4.1), the only thing to be done is the exponential attraction

of any orbits to a "thin" neighborhood ofthis manifold PI.. In order to prove this attraction property,

naturally we shall try to estimate the distance between the Z-component z(t) of the original solution u(t)
and the image p(x(t), Q0 ofthe X-component x(t) ofu(t), since x(t) + p(x(t), Q0 is on the manifold PIv.
Such an estimate is based on the following lemmas.

LEMMA 4.1. Assume that la > (c2)2. Let xCX and hCZ. If z(.) C([0,r); Z;a) for some r >

0 is a classical solution ofthe following evolution equation

+ Az + QF(x + z(t)) h, for [0, r), (4.2)dt

then the following estimates are valid,

z(t)- p(x, h) z(0)- x, h) exp(- (p- c2P l/2)t ), for [0, r),

II z(t)- p(x, h)II s z(0)- qx, h) exp(- /a-Ic212)t ), for [0, r),

(4.3)

{4.4)

in which rp is the determining mapping associated with the given p.
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PROOF. Define a functional ll(z) ]z CO(x, h)[ 2 for ze Za. For the classical solution z(t) ol

the equation (4.2), we have

I(z(t)) 2(z(t) -x, h), h- Az(t) QF(x + z(t))

-2( z(t)- CO(x, h), A(z(t) c0(x, h)) + QF(x + z(t)) QF(x + CO(x, h))

(4.5)

-2( /2 c2)II z(t)- qx, h)II z(t)- qx, h)

< -2(gt c21 1/2) ll(z(t)), fort [0, r).

Since the classical solution z(t) is absolutely continuous on any interval [to, tl] c [0, "r), it

follows that

II(z(t)) < ll(z(to)) exp (-2(la c21al/2)t ), fort 10, r). (4.6)

This leads directly to the estimate (4.3).
Similarly, consider another functional L(z) IIz- x, h)ll 2 for zeZ,. Then we have

d
L(z(t)) 2((z(t)- x, h), h- Az(t) QF(x + z(t)) ))dt

-2(( z(t)- qx, h), A(z(t) CO(x, h)) + QF(x + z(t)) QF(x + cO(x, h)) ))
(4.7)

-21A(z(t) CO(x, h))12- 2 (A(z(t) cO(x, h)), QF(x + z(t)) QF(x + cO(x, h))

A(z(t) ,, h)) 12 + F(x + z(t)) F(x + x, h)) 12- (!.1- C2 12) z(t)- x, h) 2 (la- c212) L(z(t)), for e [0, r).

After integration of (4.7), we obtain the estimate (4.4).The proofis completed.
COROLLARY 4.2. If ,o > (c2)2, then by taking la o we have V Z and X {0}, and all

the solutions u(.) of the equation (3.2) satisfy

u(t)- q0, 0 2 uo- q(O, 0 2 exp(- (la-Ic212)t ), for 0. (4.8)

Therefore the steady state CO(0, 0 is globally and exponentially stable in V.

Next, let u(t) x(t) + z(t), 0, with u(0) Uo, be any solution of the equation (3.2). Here x(t)
Pu(t) and z(t)--Qu(t) with P: H X X the orthogonal projection associated with the

decompositions (3.4) for some given la > 0.

Let > 0 be arbitrarily given. Denote by x x(t) and z z(to). We shall estimate the

difference between the solutions of following two equations with the same initial data:

dt + Az + OF(x(t) + z) h, z(to) z, > , (4.9)

dw
dt + Aw + QF(xo + w) h, w(t) z, > o, (4.10)

where A AZ. Note that (4.9) is exactly the second component equation (3.7)z with an initial value

condition at o. Also note that the truncated nonlinear mapping F has the uniform bound and the uniform
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Lipschitz continuity, so that (referring to the proof of Theorem 2.1) the classical solution w(.) of the

equation (4.10) exists uniquely for e It, co) and has the same regularity as the solution z(.) of the

equation (4.9) has.

We need an auxiliary lemma as follows.

LEMMA 4.3. After any solution u(t) of the original equation (I. I) with u(0) Uo enters the

absorbing ball B(0;p) c V for ever, the solution is uniformely Holder continuous with the exponent I/2,

i.e. there is a constant q > 0, such that for any solution u(t) of l. I),

Ilu(t) u(s)ll q It- sl 1/2 for t, s e [to(Uo), co), (4.11)

where to(Uo) is the final entering time of the trajectory u(t) started from Uo into the absorbing ball.

PROOF. Assume that > s to to(Uo). We ,re

u(t)- u(s)II IT(t- s)- Ilu(s)II + IIA/2T(t o)IIL(H)Ill do

+ fllAl/2T(t o)IIL(H) F(u(o)) do

< BI/2 p t- s 11/2 + 2 MI/2 t- s 11/2 fl + pcl ),
(4.12)

where (2.2) and (2.3) are used. Thus (4.1 1) is valid with q o(BI/2 2 Ml/2C1) + 2 MI/2I fl. The proof

is completed.
LEMMA 4.4. Let z(.) and w(.) be the solution of (4.9) and of (4.10) respectively. If > (c2)2,

then for any given A > 0,

z(t)- w(t) < qc2 A1/2, for [t, + A], with a to(Uo).
I.t c21a 1/2

(4.13)

If la > 2(c2)2, then for any given A > 0,

z(t)- w(t)II = %/ 2

la 2(c2)2
qe2Al/2’ for e [t, + A], with > to(uo). (4.14)

Here q and to(Uo) are the same as described in Lemma 4.3.

Proof. Let v(t) z(t) w(t). For e [t, + A], with to to(Uo),

d
d-i v(t)12 2(v(t), Av(t) QF(x(t) + z(t)) + QF(x + w(t)))

-2{ (Av(t), v(t) ) + (F(x(t) + z(t)) F(x(t) + w(t)), v(t) )}

-2(F(x(t) + w(t)) F(x + w(t)), v(t)

< -2(la 1/2. c2) v(t) Ill v(t) + el V(t) 12 + e:-1 F(x(t) + w(t)) F(x + w(t)) 12

s- 2(la- c21a 1/2- e/2)I v(t)12- 1’1(c2)2 x(t)- xo 2

- 2(IJ- C2/J 1/2- ./2)I v(t)12 + 15"1(c2)2 q2 A, (4.15)
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where we used (4.1 I) in the last inequality. Take e u c2p 1/2, from (4.15) we obtain

d (c2)2 q2
dt v(t)12- (lu c2l/2) lv(t)12 + A, for E [t + A].

IJ c21u !/2
(4.16)

Integrating this differential inequality, we get

Iv(t) 12 -I z(t) w(t)I (c2)2 q2 A, fort E [to, + AI. (4.17)
(IJ c21tl I/2)2

Therefore (4.13)is valid. Moreover, ifla > 2(c2)2, then we have

d
di v(t)II 2((v(t), Av(t) QF(x(t) + z(t)) + QF(x + w(t)) ))

=-I Av(t)12 + F(x(t) + z(t)) F(x + w(t))12- v(t)II2 + (C2)2 IIx(t) xll + v(t)II ]2

-(ltl- 2(C2)2) v(t)II2 + 2(c2)2 IIx(t) Xll 2- (la 2(c2)2) v(t)112+ 2(c2)2q2A, fort E [t, + A]. (4.18)

Integrating this differential inequality, we obtain (4.14). The proof is completed.

5. APPROXIMATE INERTIAL MANIFOLDS
In this section we shall prove te existence of approximate inertial manifolds for the original

equation (1.1) by the approach ofconstruction based on the determining mapping o. First of all, we define

an approximate inertial manifold as follows.

DEFINITION 5.1. A subset Yl. c V is called an approximate inertial manifold (AIM) for the

semiflow generated by the evolution equation (1.1) in V, if Y’l, satisfies the following conditions

a) Y’I, is a finite-dimensional and Lipschitz continuous manifold;

b) There are uniform constants at > 0, K > 0, and q > 0, such that for any given bounded set

in V, there is a constant to to(), such that for any initial state Uo E , the solution satisfies

distV (u(t), ’1,) ": 0t + K exp( -rl0- to)), for [to, co).

c) For any trajectory u(t) of the equation (1.1), there is a tracking orbit v(t) (which may not be a

trajectory) on the manifold Y’I,, such that after a transient period I0,tol, the error satisfies the same

exponential bound as above, i.e.

Ilu(t)- v(t)ll < a + K exp( -q(t- Io)), for e [to, oo).

DEFINITION 5.2. A sequence of subsets {1’1,k k’- in V is called a regular chain ofapproximate

inertial manifolds if each PI,k is an AIM la the above sense, dim Y’l,k is nondecreasin8, and the thickness

a(Pl,k) decreases and converges to zero as k co.

The argument in proving the main theorem is the localizingandpasting technicality as follows. Let
A > 0 be arbitrarily given. Denote by

tn to + nA, Xn X(tn) Pu(tn), Zn Z(tn) Qu(tt0, h Qf, (5.1)

p,,--I Z(tn) x(ln),Q01--Izn- qx,,, QO I,
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dn z(t") x(t"),Q0 z-n- qxn, Qf)II.

Let Wn(t): [tn, t"/ l] QV be the unique (classical) solution of the following equation with the initial value

condition:

d
di wn + AzWn + QF(xn + wn(t)) h, It., tn+ l,

Wn(tn) Zn,

(5.2)

LEMMA 5.3. Assume that > 2(c2)2. The above defined {Pn} and dn} satisfy

Pn s +anpo, na 1" (5.3)

dn s
b +bnd’na 1" (5.4)

where the constants are given by

a-- exp(- (- c2I/2)A), 2qc2

la c2 1/2
AI/2

b exp(- -(p-[c212)A), qc2[ -x/ 2 + ]A 1/2.
tl 2(c2) 2 t 1/2. c2

PROOF. By Lemma 4.1 we have

Wn(t) q3(Xn, h) p ,.xp(- (- C21LI l/2)(t tn)), for E [tn, tn+ l,

Wn(t)- q(Xn, h)II s dn exp(- (-Ic212)(t In)), fort e [tn, tn+ 1]-

We can estimate Pn+l by

(5.6)

(5.7)

Pn+ --I Z(tn+ 1)- Xn+l, h)

g Z(tn+ 1)- Wn(tn+ 1)I + Wn(tn+l)-Xn, h)I + gKXn, h)-p(Xn+ l, h)I,
(5.8)

in which we use (4.13) for the first part, (5.6) for the second part, and (3.12) and (4.11) for the third part,

to obtain

Pn+ s qc2 A1/2 + Pn exp(- (/.I- C21LI I/2)A) + 1C2 IIx- x+
C21tl 1/2 /.t- C2/.I 1/2

s qc2 A1/2 + Pn exp(- ( cI/2)A) + qc2Al/2
! c2Ju 1/2 lu- c2ju 112

2qc2 A1/2 + Pn exp(- (tt- c2tl/2)A) apn + , n 0, 1, 2
p c2p 1/2

(5.9)

Note that 0 < a < 1. Hence (5.3) follows. Similarly, we can estimate dn+ by

dn+l < z(tn+l)- Wn(tn+l)ll + Ilwn(tn+l) q>(xn, h)ll + IIxn, h) Xn+l, h)ll (5.10)
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2

2(c2)2
qc2AI/2 + dn exp(- 2(u Ic212)A) +

It !/2 c2
qc2A I/2

bdn+, n-0, !,2

where we used (4.14) for the first part, (5.7) for the second part, and (3.13)and (4. !1) for the third pan.

Note that 0 < b < 1. Hence (5.4) follows. The proofis completed.

Now we state and prove the main result on the existence and properties of AIM.

THEOREM 5.4. Under the Assumptions (AI) and (A2), there exists an approximate inertial

manifold *ta for the semiflow genemteo 7 the evolution equation (1.1), which is given by

l.la Graphq:(., Qf) {x+qx, Qf): forall x E Xla }, (5.11)

where q0: Xt Zt Z is the dertermining mapping associated with It > 2(c2)2. The dimension of the

manifold is

dim ll.gt dim Xt n(it). (5.12)

For any solution u(t) with u(0) Uo EV, the following attraction properties hold,

diStH(U(t), 1) s J(it) + Qu(to) Pu(to),QO exp(- (it c2it l/2)(t to)), for :’to, (5.13)

distv(U(t), 1’Iv) N(it) + Qu(to) (Pu(to),Q0 exp(- (it-Ic212)(t to)), fort > to, (5.14)

where to- to(Uo)is the final entering time of the trajectory u(t) into the absorbing ball B(0;p).

Furthermore, the thickness J(it) in H and the thickness N(it) in V satisfy

J(it, const (5.15)
(it c2it 1/2)3/2

+-](It const (5.16)N(it) const
(it- 2(c2)2) 1/2 It 1/2. c2 (c2)2) 1/2 (It1/2- c2)2

PROOF. For u(t) with u(0) Uo, there must be an interval [tn, tn+ 1) which contains t. Using

(4.13), (5.6) plus (5.3), and (3.12) plus (4.11) for the following three parts respectively, we can get

distH (u(t), l.la) s Ix(t) + z(t)l- Ix(t) +0(x(t), h)ll z(t) x(t), h)

s z(t) Wn(t) + Wn(t) Xn, h) + Xn, h)- q:(x(t), h)

/ + an po)exp(- (it- c2it l/2)(t tn)) +A1/2 +
a

qc2

It- c2it 1/2
AI/2

2qc2

It c2it 1/2
+ 1- )A1/2 + poexp(- (it- c2it l/2)(t to)), for > to,

where in the last inequality (5.5) is used. enote by

j(it) 2qc2 (1 + )A 1/2

It c2itl/2

(5.17)

where, let i A 1/2 and
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o(): 1- a
AI/2=

exp(- (p c2P !/2)2)

then we can find the minimum value of "g) attained at * > 0 such that to* (la- c21u I/2)’2 satifsies lhe

critical point equation

exp (o3") + 2to*, so that to* 1.26.

Hence we get

min o03) )_
(1-c211/2) 1/2 exp(- to*) (la-C21L11/2)

Substitute this into (5.18) and (5.17), we obtain (5.13) and (5.15) in which the const 2qc2(to*)i/2[ +(I

exp(- to*))-l]. Similarly, we have

distv (u(t),) : Ix(t) + z(t)l- Ix(t) + x(t), h)l II- z(t)-q:(x(t), h)II

z(t)- Wn(t)II + Wn(t) q(Xn, h)II + qXn, h)- e,p(x(t), h)

2(c2) 2
bn 2J(la Ic212)(t +qc2Al/2 + + do)exp(- tn))

Ja 1/2. C2
qc2A112

2 +_[
2(c2) 2 p-i]2--c

l(l + -6 )qc2Al/2 + doexp(- (V-Ic212)(t to)),

for z to, where in the second inequality we used (4.14), (5.7) plus (5.4), and (3.13) plus (4.11) for the

three parts respectively, and in the third inequality we used (5.5). Denote by

N(la)
.2(c2)2

+ l(l +
1/2. c-- b )qc2Al/2’ (5.20)

where, let 5 A112 and

/t() bAl/2
exp(- la-Ic212)2)

then we can fmd the minimum value of5) attained at

la -Ic212
)1/2

where w* is the same as above. Hence we get

min x(15)= r(15 *)
exp(- to*) (la- Ic212) 1/2

Substitute this into (5.20) and (5.19), then we obtain (5.14)and (5.16) in which the last const (1+ ")
qc2(2to*)l/2[ + (1- exp(- 0*))’1].
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According to Definition 5.1, this set "[.t given by (5. 1) in V is an AIM for the semiflow

generated by the evolution equation 1. ). We emphasize specifically the obtained attraction property: By

(5.17) with (5.18) and (5.19) with (5.20), any solution u(t) of (1.1), after its entering into the absorbing

ball, will be tracked in the sense of(5.13)and (5.14) by an orbit v(t) given below on the AIM,
v(t) :: Pu(t) + e0(Pu(t),Qf).

Therefore the condition b) and condition c) in Definition 5.1 are both verified. The proof ofTheorem 5.4

is completed.

COROLLARY 5.5. There is a regular chain ofapproximate inertial manifolds Mk:k [2(c:):] +1,

[2(c2)21 +2 for the semiflow generated by the evolution equation (1.1).
PROOF. This is an immediate consequence of Definition 5.2 and the thickness formulas (5.18)

and (5.20) for intergers larger than 2(c2)2. Therefore the assertion is true.

The obtained results can be generalized as follows. We replace the Assumption (A2) by the

following Assumption (A3), and generalize the property (3.10) to the following Assumption (A4).
ASSUMPTION (A3). (dissipation condition) Assume that for any uoV, there exists a unique

global strong solution u(t) of the equation (1.1) fort 0 with u(0) Uo. The semiflow in V generated by

this equation has the absorbing property. Moreover, after a truncation (3.3) holds.

ASSUMPTION (A4). (fractional monotonicity condition) Let F(u) be the truncated nonlinearity

(3.1). Assume that there are constants c3 > 0 and 0 g < 2, such that

(F(u) F(v), u- v) - c3 Ilu- vii lu- vl u" ’:, for u, v c V. (5.22)

Now we state the correspondin8 result under these generalized assumptions without proofwhich is

parallel to the stream ofour above treatment.

THEOREM 5.6. Under Assumptions (AI), (A3), and (A4), there exists an approximate inertial

manifold :Yl.t, given by (5.11), for the semiflow generated by the evolution equation (1.1), with la >

max{ 2(c2)2, (c3)2/(2- :)}. Moreover, it has the following attraction property,

distv(U(t),) F(Ia) + II Qu(to) Pu(to),Q0 II exp(- (-Ic212)(t to)), for to, (5.23)

where to to(Uo) is the final entering time of the trajectory u(t) into the absorbing set fixed in the

truncatiom, and

F(la) const as la oo. (5.24)
la -c3 2" n

6. APPLICATIONS
In this section we present several application examples for which Theorem 5.4 or Theorem 5.7 can

be used to assert the existence ofa regular chain of approximate inertial manifolds.

BURGERS’ EQUATION. As a simple model for various convection-diffusion phenomena and for

turbulence flow, Burgers’ equation has been studied for more than fifty years. Consider the following

initial-boundary value problem of Burgers’ equation:

0u 02u 0u R+- Vx2 + u N fix), (t, x) e (0, 1),

u(t, 0) u(t, 1) 0, 0,

u(0,x) Uo(X), x I0, 11.
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Here v > 0 is a constant. Let H L2(0, 1) with he norm denoted by and define an operator A:

D(A) ti by A -v (d2/dx2) and D(A)-- H2(0, I)NH 1o(0,1). Then the operator A satisfies Assumption

(AI). Let V D(A1/2) =Hlo(0,1)with the norm vii IA/2vl. Asume that f V is constant in t. The

nonlinearity is denoted by R(u) uux.
The absorbing property and the existence ofa global attractor are known. However, in the case f*

0, the attractor is nontrivial. On the other hand, the question ofwhether there exists an inertial manifold for

(6.1) is still open in general, since the spectral gap condition is in the form

Zn+l-Zn K(7n/+21 zl/2)n fora large n.

Note that Zn 2xv n2, this condition reduces to (27rv)I12 a K, which is not valid in general. In Constantin

et al. 16], the existence of inertial manifolds was proved for a modified nonlocal Burgers’ equation with

the nonlinear term R(u) (u, t)Ux where t H is given.

Here by verifying that the nonlinearity R(u) UUx satisfies our Assumption (A2), we can asser
that there is a regular chain of approximate inertial manifolds in the form of (5. I) for this Burgers’

equstion. Note that Hol(0, l)c C[0, ]. We have:

IR(u) [u2(ux)Rdx ]1/2 < (sup{lu()l: [0, 11}) II u :11 u II2, foru eV; (6.2)

IIR(u) I’--I (R(u))x (u) + UUxx

lux 124 + (sup{lu()12: [0, 1]})IAul

(6.3)

C lux II ux + 2 u 2 IAul CII u + ,c2 u 2 IAu I, for u : D(A),

where we used Gagliardo-Nirenberg inequality in getting Ux [4 const Ux 1" Uxx 0 with 1/4 s 0( 1-

I/2) (I 0)(I/2) so that 0 1/4 and we take 0 I/2, and C is a constant.

IR(u) R(v)l (/2(u- v)2(Ux)2 dx )1/2 + ( 2v2(ux Vx)2 dx )1/2

2,c Ilu- vii u + 2 v II Ilu- vii 2,c (11 u + v II) u- v II, for u and v e V;

(6.4)

IIR(u) R(v)II l(ux + vXux v )1 +l(u- V)Uxx + v(ux v)l

(I Aul +1 Av I)II u- v + 1 u- v Au + 1 v Au- Avl

< 2(I Aul + tAv l) Au- Av l, for u and v D(A);

(6.5)

and

(R(u), u) fU2UxdX 0 > 1311 u 2, for u e V, with any 0 < 13 < (6.6)

Therefore Assumption (A2) is fully satisfied. As a result, Theorem 5.4 can be applied to the semiflow

generated by Burgers’ equation (6.1), and the AIMs in the form of(5.11) with corresponding determining
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mapping exist and have the properties (5.12) through (5.14) for this semiflow.

REACTION-DIFFUSION EQUATIONS OF HIGH DIMENSION. Consider a reaction-diffusion

equation

du + Au + R(u) f, 0, (6.7)dt

where A vAu" D(A) (= H2(f)lqHlo([/) )--, H (= L2(I)) ), and t) is an open, bounded and connected

of Rn with a Lipschitz continuous boundary F, f ZHo(I)) is fixed, and R(s) is a polynomial of oddset

degree with a positive leading coefficient, i.e.

2p-1
R(s) bksk, p > (integer), b2p-I > 0. (6.8)

In Temam [2], it was proved that there exists a global attractor with finite fmctal dimension for this

equation (6.7) and that for space dimension n and 2 there exist inertial manifolds. In Mallet-Parer and

Sell 17 the spatial averaging principle was applied to prove the existence of inertial manifolds for this

type of equations with n 3 if (0.2n)3. But for the higher dimensional case (n :" 3) with a general

domain, the existence of inertial manifolds is unknown. Here we can apply our result ofTheorem 5.4 to

the higher dimensional reaction-diffusion equations with a general domain by checking the conditions in

(A2).
n

Denote by V nlo() with the norm v Y Idv/dxil2 )1/2, where stands for the H-norm.
i--l

Note that the absorbing property in V of (6.7) with (6.8) under the above conditions has been shown in

Temam [2], we need only to verify the first conditions in 2), and the condition 3) of(A2).
We have, for any u and veV,

< coast u(x)- v(x)ladx

2p-1

R(u)- R(v)122Zlbkl2[u(x)k" v(x)k]2dx (6.9)

k=l

2p-I

1/2 f [(’U(x)lk" + ’U(x)lk’2V(X)’ + + ’V(x)lk" l)4dx] 1/2

,2(k-l) ,,2(k-l)< coast II u- v 2 II u II L2(k_l) + II v II L2(k_l)

114(P 1) 4(p-1s coast u- v 2 (11 u iiLa(p.l) + V. La(p.l)

< coast u- v 2 (11 u 4(p-1) + v 114(p 1) ),

where in the third inequality we used Gagliardo-Nirenber8 inequality to get Ilu -VilLa coast Ilu vii, for

n s 4, and used Young’s inequality to get lu(x)12(k-i)Iv(x)12i lu(x)12<k-l) + C Iv(x)12(k-l) with a constant C
(p l)/pq and p (k-l)/(k-i), q (k IVi, k 2, and then Holder inequality and Sobolev

imbedding L4(p-I)() c V valid if n/2 > n/(ap 4) are used respectively in getting the last two

inequalities.
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Next we check the condition 3) of (A2). Note that by Young’s inequality there is a uniform

constant D > 0 such that

2p-2

E bk sk+l .b2p-I Isl2p+ DI, foranys R.

Hence the condition 3) of (A2) is satisfied:

(R(u), u) > I b2p_llU(X)12pdx- DII[II>- Dllfl, foi’anyu V. (6.10)

As a result, we can apply Theorem 5.4 to the reaction-diffusion equation (6.7) with (6.8), if

2p- 3
n<4 and --4

< n-" (6.11)

The second inequality is obtained from the only requirement inequality for the imbedding L4(p-1)(f) c V.

Thus we can conclude that for the equation (6.7) with

n 3 or n 4, and 2p- 3 (polynomial (6.8) of degree 3 with b3 > 0), (6.12)

there exist the AIMs in the form of (5.11 and have the properties (5.12) through (5.14).

2D GINZBURG-LANDAU EQUATIONS. The complex Ginzburg- Landau equation (with the

Dirichlet boundary condition) in the following form:

0u- -(1 +iv)Au+(:+iq)lul2u-ru=0, for(t, x)R+, f, (6.13)

UlF=0, fort>0,

where v, rl, and : are real numbers with K > 0, andl is an open, bounded, and connected set of Rn (n
1), with a boundary F being Lipschitz continuous, can serve as mathematical models for the behavior of

superconductors in a magnetic field and near the critical temperature, cf. Gorkov 18], nonlinear instable

waves in plane Poiseuille flows, cf. Stewartson and Stuart 19 ], and other applications, cf. Temam [2].
Note that the existence of global atmctor for n < 2 and the existence of inertial manifolds only for n
have been proved in Doering et al. [20]. However, for the space dimension n 2 and the general domain

fL the existence ofinertial manifolds is an open issue.

Take the viewpoint to visualize a complex function as a vector oftwo real components, namely u
col (Ul, u2), set up H [L2(fl)]2 with the norm [. [, V [Hol(f)]2 with the norm II.ll, define an operator

A=(-A vA ): D(A) H with D(A) [H2(fl)fHlo(fl)]2,-vA -A

and a nonlinear mapping

|lu 12(Iui qu2)
B(u)

u 12(rlUl + :u2)

Then (6.13) can be expressed as the following evolution equations,

du-+Au + B(u)-m 0, t0. (6.14)
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It is easy to verify that A: D(A)-,. H satisfies (AI). Denote by R(u) B(u) u. Let n =2. Then one can

verify that R(u) satisfies (A2). Since the absorbing property was proved, cf. Temam [2], below we only

check the third inequality condition and the fifth inequality condition of (A2).

For any u and v e V, we have

R(u)- R(v)12 21 B(u)- B(v) 12 + 21 121 u v 12

const (K2 + rl 2) u(x) v(x)12[ lu(x)l2 + Iv(x)12ldx + const u- v 2

< const (u(x) v(x)14dx )1/2( d[lu(x)14 + Iv(x)14ldx)l/2 + const u- v 2

(by Sobolev embedding) const u- v 2 [(ll u 4 + v 114) 1/2 + l,

and, for any u e V,

(R(u), u) (B(u), u)- lu 12-- d[Klu(x)l4- lu(x)12ldx

2 2
: [lu(x)l 2 ]2dx_ a

2: 4: 4:

(6.16)

Therefore the two conditions of concern are satisfied. We can apply Theorem 5.4 to the 2D Ginzburg-

Landau equation (6.13) or (6.14) to assert that there exist the AIMs in the form of(5.11) and have the

properties (5.12) through (5.14).
AXIALLY SYMMETRIC KURAMOTO-SIVASHINSKI EQUATIONS. In Foias et al. [21,221,

the existence of inertial manifolds in H Sobolev space for the Kuramoto-Sivashinsky equation of one

space dimension was proved.The approximate inertial manifolds for the D Kuramoto-Sivashinsky

equations with periodic boundary conditi ,’,s constructed by several schemes including the concrete steady-

state determining mapping has been prr.sented in Jolly, Keverkidis, and Titi 12] based on the methods in

Tiff 11 ]. However, for the Kummoto-Sivashinsky equation on 2D domains

ut+A2u+Au+IVul2=0, t0, xE f/oR2, (6.17)

the theory of global dynamics is under exploration, since the dissipation has not been proved yet in

general. Recently, Sell and Taboada [23] dealt with thin rectangular domains and periodic boundary

conditions, and proved the local dissipativity and the existence of local attractors in D(A1/4).
Here we want to apply the result in this work to the axially symmetric Kuramoto-Sivashinsky

equation on annular domains in R2. Specifically, let {(r, 0): ro s r’: rl and 0 < 0 < 27r} with rl > ro
> 0. The 2D K-S equation (6.17) on such a domain 1" with the Dirichlet boundary condition and in polar

coordinates (r, 0) is given by

du d’J’u 2 O3u O2u + du du- +-- +r3 +(1 +,Or2 -- fortzO,(r,O) E f, (6.18)

u(t, ro, 0) uCt. rl, 0) 0, for :" 0, 010, 270.



22 Yo YOU

Here we consider only the axially symmetric solutions of (6.18). Thus the equivalent equation and the

boundary conditions of concern are given by

Ou 04u 03u 1.02u Ou du
r- +r- +2r3 +(r+lbr2 +i +IN 12=0’ fort0, rElro,rl], (6.19)

u(t, ro)=U(t, rl)=0, fort >0,

u(0, r) uo(r) V, for r [to, rll.

Let (ro, rl). Define Hilbert spaces H L2(I) with the norm denoted by[ u and V H2(I) OHio(1) with

the norm u (urr(x)12dx)1/2. Define wo linear operators Lu rut, and

R(u) (r + r-l)urr + (r/2)(Ur)2: D(A1/2) V--H.

Then (6.19) can be expressed by the following evolution equation:

Lu + Au + R(u) 0, z 0, u(0) uo : V. (6.20)

We first verify that the equation (6.20) possesses the absorbing property in V, and then check that

the crucial third inequality condition of (A2). For the first issue, take the inner-products of the both sides

(6.19) with -r- lurr, we have

d 12 12 2
2 dt Ur + Urn" ( Urrr, Urr)- ((1 + )Urr, Urr)- (- Ur, Urr)- ((Ur)2, Urr) (6.21)

d 12 12 ((1 + )Urr, Urr)" (12dtlur +lurrr r2Ur, Ur)--0.

By Young’s inequality, we have constm,.. CI(II) > 0 and C2(E2) > 0, which depend on small I1 > 0 and

12 > 0 respectively, such that

4 12+ CII((l + )Urr, Urr) Sll urrl + C() lum
i(L 2 12r2U,,uJle.llullL4+C(e2) lur,, +C2,

(6.22)

where CI and C2 > 0 are constants. Substitute (6.22) into (6.21), we get

lurd 12 +1 Urn. 12 ": 2[C1 + C2], (6.23)

which implies that the strong solution of(6.19) in HI(I) exists globally and there exists an absorbing set in

HI(I). Next take the inner-products ofthe both sides (6.19) with r-lurrrr to get

d 12+lurrrrl2+ 2
2dtlUrr (iUrrr, Urrrr)+((l + )Urr, Urrrr)+(iUr, Urrrr)+2((Ur)2, Urrrr) (6.24)

2 dt urld 12 +lum 12 + (lr2 urrr’ Urn-> ((1 + )Urn., Urrr) + ( Urr, Urrr> (i Urr, Urn>

.1_ u,,,>- <uu, u,>+ (r2Ur,
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d 12 + Urrrr 1:2 12 3 3 r I(Urr)3d 0.d-i Urr -lUrrr + ((- .r )Urr, Urr) + Ur, Ur) +

Similarly wc have

12lul2glurr +C3lurl2,

3 .2

2r2 u-, un-) 3 u- IILa + C(3) s Urrrr 12 +C4,

(6.25)

Urr)3dr u-II 3
s const Urrrr 17/41 ur 15/4 Urrrr 12 + C5 lu ,

where C3, C4, and C5 > 0 are constants. Substitute (6.25) into (6.24), we obtain

d [2 12 < C31ur + C4 + C5 lur (6.26)lUrr +lUrm 12 1.

This, together with the fact that ur 12 < Uor 12exp (- vt) + 2(C1 + C2)/v for some constant v > 0 from the

previous step (6.23), implies that the strong solution of (6.19) in H2(I) exists globally and there exists an

absorbing set in H2(I). Thus it remains to verify the crucial first condition of 2) in (A2) as follows: for any

u and v in H2(I),

IR(u) R(v)l 2 21 (r + r-1)(Urr Vrr)12+ 21 (r/2)(Ur Vr)(Ur + vr)l 2 (6.27)

const u- v 2 -,- const Ur- Vr 112L4 (11 u, 114 + Vr 112L4)
const u- v II2 (1 + II u 2 + v 112).

Therefore, We can apply Theorem 5.4 to the axially symmetric Kummoto-Sivashinsky equation (6.19) to

assert that there exist the AIMs in the form of(5.11) and have the properties (5.12) through (5.14).
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