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1. INTRODUCTION.
In 1929, Kolmogorov proved a law of the iterated logarithm (LIL) for independent random

variables under certain boundedness conditions. Hartman and Winter in 1941 verified that the

LIL is universally true for i.i.d, random variables when the second moment exists. There are

certain extensions of the LIL to martingales. However, there appears to have been no discussions

on this problem for exchangeable random variables. We address this problem in this paper and

extend the LIL to exchangeable random variables with necessary and sufficient conditions for the

LIL in terms of conditional mean and variance.

Random variables (r.v.’s) X1," ,X, are said to be exchangeable if the joint distribution of

X1,-.-,X,, is permutation invariant. A sequence of r.v.’s {X,} is said to be exchangeable if

every finite subset of the sequence is exchangeable. Obviously, i.i.d, random variables are

exchangeable, but not vice versa. The LIL is said to hold for a sequence of r.v.’s {X,} with

EX, 0 for all n if

I n

P imsup =

where S EX and log denote the natural log to the base e. The following example shows

that the LIL can fail even for exchangeable r.v.’s while a sequence of exchangeable r.v.’s may
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satisfy the LIL and not be independent r.v.’s.
EXAMPLE 1. Let {X,,n >_ 1} be a sequence of i.i.d, random variables such that EX 0

and EX and let Y,, ZX,, n > 1, where the random variable Z is independent of the

sequence {X,,n >_ 1} with P(Z a)= P(Z b)=0.5. It is not difficult to see that {Y,} is a

sequence of exchangeable r.v.’s.
Ifa=2andb=0, thenEY,,=0andEY=2foreveryn>l. We defineS2,= EY2jand

U2, 2 loglog S. Clearly,

P limsup =1 =0.hP lira =0 (1.1)

in view of the fact that by [4],
n

limsuplimsup
/2n Io9Io9 n 2n Io91o9 n

1, a.s. (1.2)

In this case, the LIL is almost nowhere true for the sequence of exchangeable random variables

{Y,} versus the LIL holding for the sequence of i.i.d, random variables {X,,}.
However, if a and b -1, then EY2, 1, S n, and U 2 loglog n, which yields

from (1.2)

P limsup Yj/S,U,

( )0.5 P limsup X/vt2n loglog n

+ 0.5 limsup y] (-X.i)lv/2n loglog. 1 1. (1.3)

This is another case where the LIL holds for exchangeable r.v.’s{Y, n > 1} which might

definitely not be a sequence of independent r.v.’s as long as

P(X < a)P(X, < b)+ P(X > -a)P(X, > -b)

P(X, < a)P(X, > -a)+ P(Xx < b)P(X, > -b).

A similar example can be constructed to show that under certain conditions the LIL holds

for martingales but fails for exchangeable r.v.’s and vice versa. Thus, conditions for the LIL to

hold may be very different for exchangeable r.v.’s than for independent r.v.’s or martingales.
Necessary and sufficient conditions for the LIL to hold for exchangeable r.v.’s are established

in the next section.

2. THE LIL FOR EXCHANGEABLE r.v.’s.
Below we establish the LIL and give the necessary and sufficient conditions for exchangeable

r.v.’s to satisfy the LIL by using de Finetti’s theorem. Let q denote the collection of distribution

functions on R (real numbers) and provide with topology of weak convergence of distribution

functions. Then, de Finetti’s theorem [2] asserts that for an infinite sequence of exchangeable
r.v.’s {X,,} there exists a probability measure # on the Borel a-field Z of subsets of such that
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P{g(X,, .,X,,) e B} I PF g[X,, .,X,] B} d(F) (1.4)

for any B and any Borel function g:R"--R,n > 1. Moreover, PRIg(X1,...,X,,) B] is

computed under the assumption that the sequence of r.v.’s {X,} is i.i.d, with common

distribution function F, where EFg(X,) is the conditional mean obtained by integrating g(x)
with respect to PF given by (1.4).

From (1.4), we know that if {X,} is a sequence of exchangeable r.v.’s on (F,.A,P), then

{EFg(X,) is a sequence of random variables on (O,E,#) and for each f q) given, {X,,} are

independent, identically distributed.

Taylor and Hu (1987) showed that for a sequence of exchangeable r.v.’s {X,} such that

EF[X[ < o u a.s.

EFXI 0 u- a.s. if and only if n1-- XO a.s.
k=l

Moreover, it was observed that EFX --0 #-a.s. is equivalent to E(X,X2)= 0. Blum, Chernoff,
Rosenblatt, and Teicher (1958) showed that for a sequence of exchangeable r.v.’s {X,} such that

EX < o

if and only if

n
Xk converged in distribution to a N(O,a) r.v.v/- k

EFX --0 #-a.s. and EFX a #-a.s. (1.5)

which is equivalent to the alternative and structurally simpler condition EXX =0 and

EXX] 1.

The necessary and sufficient conditions for the LIL to hold for exchangeable random

variables are patterned after these results.

THEOREM 1. Let {X,.,,n >_ 1} be a sequence of exchangeable r.v.’s with EX =0 and

0 < EX a < cx. Then

n
limsup X / v/2n loglog n a,a.s., (1.6)

if and only if

t’f EFX, 0 and af EF(X,- uf)2= a2, #-a.s. (1.7)

COMMENT. Condition (1.7) is equivalent to EX,X 0 and EXX 1.

PROOF. First, observe that (1.6) is equivalent to

P X, / v/2n loglog n > ca, i.o. (1.8)
1, ifc<l

Next, from (1.4) and by the continuity of probability measure and the bounded convergence

theorem,

P 2 x, / v’, oo , >_ , i.o. (./
1

X. / v/2n loglog n >_ ca
k
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lira lim PF , X, / 2n Ioglo9 n > c d(F)=
lira lira P X,/2nloglogn >c

n=k

x, / oo , i.o. (

Then, we conclude from (1.8) and (1.9) that (1.6) is equivalent to (1.10) and (1.11) where

PF (Xj I/F) / V/2n loglog n

_
ca- l/n/(2 loglog n)

--0, p-a.s., for any c > 1.

PF (X. rE) I /2. oo . >_ (,- v/./(2 loglog n) vF, i.o.

1, p-a.s., for any c < 1.

and

(1.10)

(1.11)

Clearly, the "if" part follows easily from (1.10)-(1.11) since {X,--Vv, n >_ 1} are conditionally
i.i.d, with zero mean given F, which leads to

PF (Xj- l/F) I V/rt loglog n >_ CaF i.o. (1.12)
1

{ for any c >
1’

for each F fi q,
for any c<

when 0 < aF < by the LIL. The above with I/F 0 and aF a, p-a.s., confirms (1.10) and

(1.11) and hence establishes (1.6).
To prove the only if" part, we first compare (1.10) with (1.12) to assert vF _< 0, p-a.s..

Otherwise, if p(F:i/F > 0) > 0, there exists a s > 0 such that

p(E) > 0, E {F:em > } (1.13)

and on the set E, for all sufficiently large n

- //( ogo ) < . (.)

Hence from (1.12),

p, (x,-, / ,/ oo , _> ,- /h/( oo , ,,i.o. (.1
1

=1, for anyc>landFGE.
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It should be mentioned that although (1.15) is deduced under the assumption that 0 <
(1.15) is still true when crF ----0 as a trivial case and a x is excluded from consideration in

view of the fact that EaSE <_ E EFX a < oo. The contradiction of (1.15) to (1.10) makes the

assertion ’v -- 0,/-a.s.. A similar argument from (1.11) and (1.12) concludes , _> 0, #-a.s., thus,

F 0, /-a.s., has been confirmed. With this, we can reduce (1.10) and (1.11) to

(x-,///oo , >_ ,, i.o. (1./

{01 fr any c >
for any c < 1’ #-a.s.,

A comparison of (1.12) with (1.16) yields aF a, # a.s., to complete the proof of Theorem 1.

We remark that the conditions of Theorem are satisfied of a and b 1, but are not

satisfied if a 2 and b 0.

EXAMPLE 2. Let X be a random variable with EX 0 and 0 < EX=< x), and let

X, X,n >_ 1. Then (1.7) and (1.6) clearly fail for the exchangeable sequence {X,,n >_ 1}.
For a sequence of random variables {X,,n >_ 1}, let T be the tail a-field defined by

T a(X3: J >- n) and let
n--1

n
T limsup X / v/2n loglog n. (1.17)

When {X,,n >_ 1} is a sequence of i.i.d.r.v.’s such that EX 0 and EX a=, T is almost

surely equal to the constant a. Theorem also yields T a a.s. if condition (1.6) holds for

exchangeable random variables, and the example in Section shows that Theorem 1 may be

obtained for non-independent random variables. It is also worth observing that for exchangeable

r.v.’s condition (1.7) is the necessary and sufficient condition for n-1/= X3 to converge in
3=1

distribution to a N(O,a2) r.v. It is possible for n-1/ X3 to converge in dastribution to a
3=1

mixture of normal distributed r.v.’s (cf: Chapter 2 of Taylor, Dafter, and Patterson). For

example, if {X,, n >_ 1} is a sequence of exchangeable r.v.’s with EXa =0, EX < o, and

E(X,X=) 0 (equivalently UF 0 #-a.s.), then n- /= X converges in distribution to a r.v.
3=1

Z which has distribution function f(x)= (a-lx)dG(a) where (I)is the standard normal
0

distribution function and G is a distribution function with support contained in [0,c). Theorem

2 provides a LIL for this setting.

THEOREM 2. If {X,, n

_
1} is a sequence of exchangeable r.v.’s with EX < cx, then in

(1.17) T is an extended random variable which can be defined by

x:) o {Z(X IT} > O}

T v/E(X[T) on {E(X, IT)= O} (1.18)

-oc on {E(X1 IT) < 0}

REMARK. Traditionally, hypotheses of limit theorems for exchangeable random variables

are phrased in terms of F EF(X) and aF EF(XI)- ’F which are random variables on the

probability space ((I),E,#). It can be shown that g(w)= P(Xl <_ t[T)(w)is a measurable

mapping of (,A) into ((I),E) and # can be identified with the induced probability measure Pg
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where T is any a-field which make the exchangeable r.v.’s {X,,n 1} conditionally i.i.d. (e.g., T

could be the tail a-field). Hence, T can be identified with TF, a r.v. on (I,,E,#) defined by

on {F: uF > 0}

Tv av on {F:uf 0}. (1.19)

--c on {F:af < 0}

and the proof of Theorem 2 follows from the proof of Theorem 1. Note that T TFog a.s.

where o denotes the composition mapping.

PROOF OF THEOREM 2. Since EX < c, uF, and aF exist for / almost every F E .
From (1.12) if follows that

PF limsup (X,- UF) / v/2n loglog n aF 1,

L.-O 3=1
for # almost every F E @. The proof then follows by observing that

completing the proof. I-I

From the proof of Theorem 2, it is clear that the hypothesis EX < cx can be replaced with

EFX < c #-a.s.
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