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ABSTRACT. This paper is devoted to asymptotic formulas for functions related with the spectrum

of the standard Laplace operator in two and three dimensional bounded doubly connected domains

with impedance boundary conditions, where the impedances are assumed to be positive functions.

Moreover, asymptotic expressions for the difference of eigenvalues related to impedance boundary

value problems with different impedances are derived. Further results may be obtained.
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1. INTRODUCTION
The underlying problem is to deduce the geometrical properties ofa membrane from a complete

knowledge of the eigenvalues {,(o)}’. for the negative Laplacian-&’’- inR", n 2 or

3.

Let fl be a simply connected bounded domain in R" with a smooth boundary 0fl in the case

n 2, or a smooth bounding surface $ in the case n 3. Consider the impedance problem

(A,,+.)u-0 in ff, (1.1)

n+ u-O on aF(or$), (1.2)

where ;- denotes differentiation along the inward-pointing normal to Of (or S), and o is a positive

function. Denote its eigenvalues, counted according to multiplicity, by

0<l.h(o)su2(o)<...<l.t,(o)s....-,o as k--,oo. (1.3)

At the beginning of this century the principal problem was that of investigating the asymptotic
distribution of the eigenvalues (1.3). It is well known [1] that in the case n 2

i.t,(o)~( 4-)k as k--*oo, (1.4)

while in the case n 3

q(o)~ -v-k as k oo, (1.5)

where f and V are respectively the area and the volume of the domain f. The problem of

determining further information about the geometry of fl has been discussed by many authors, see
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for example Pleijel [2,3], Kac [4], McKean and Singer [5], Stewartson and Waechter [6], Waechter

[7], Greiner [8], Smith [9], Gottlieb [10-12], Hsu [13], Sleeman and Zayed [14,15] and Zayed

[16-23], using the asymptotic behavior of the spectral function

(R)(t)= X exp[-t,(o)] as t-,0. (1.6)
-1

Thus, if o 0 (Neumann problem), it is well known that in the case n 2

K(Q)dQ + O(t) as 0, (1.7)I9(t) +
8(t)

+ a +
a

while in the case n 3

V
+12e/1/lfsfsO(t)=(4t)3+ H(QQ + [H(Q)-N(Q)Q +o(tm) as 0. (1.8)

If o (Dirichlet problem), it is well known that in the case n 2

la (tafO(t) ) j K2(QQ +o(t) as 0 (1.9)
4nt 8(t)a+a+ n

while in the case n 3

IS[+ H(QQ + [H2(Q)-N(Q)Q +O(t) as 0 (1 10)O(t)
(4nt)3 16n/ ltl

An examination of the results (1.7) and (1.9) shows that in the case n -2 the first term of O(t)

determines the area lof, the second term determines the total length] 0fl of the boundary 0fl

and the fourth term determines the cuature K(Q) of Ofl at the point Q r0fl while the sign of the

second term determines whether we have a Neumann or a Dirichlet problem. The third term a0 in

(1.7) and (1.9) has geometric significance, e.g., if is smooth and convex, then a0 ; while if fl is

permitted to have a finite number of smooth convex holes "h", then a0 (1 h).
Similarly, an examination of the results (1.8) and (1.10) shows that in the case n 3 the first

term of O(t) determines the volume V of , the second term determines the surface area IS of S,

the third term determines the mean cuature H(Q) ? + and the fourth term determines

of the surface S at the point Q, where R and R are thethe Gaussian cuatureN(Q)-
principal radii of cuature, while the sign of the second term of (t) determines whether we have

a Neumann or a Dirichlet problem.
We merely note that aspects of the question of Kac, namely, "n one hear the shape of a

drum?" have been discussed by Sleeman and Zayed [14] when n 2 and by Zayed [16] when n 3

for problem (1.1)-(1.2) in the case is a positive constant.

Suppose that is a general doubly connected bounded domain in R, n 2 or 3 consisting of

a simply connected bounded inner domain with a smooth boundary 0 in the case n 2 (or a

smooth bounding surfaceS in the casen 3) and a simply connected bounded outer domain D

with a smooth boundary 0 in the case n 2 (or a smooth bounding surface S in the case n 3).
Consider the impedance problem

(,+)u-0 in , (1.11)

+ot u0 on 0 (or S), (1.12)

and
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n2+02 u ::0 on Og22 (or $2), (1.13)

andwhere denote differentiations along the inward-pointing normals to Og2 (or S) and 0922
(or S) respectively, in which the impedances o and o are positive functions.

Denote its eigenvalues, counted according to multiplicity, by

0<I(OI, O2) N(OI, O2) N...N(OI, O2) N... as k. (1.14)

The problem of determining the geometry of as well as the impedances o and o2 from a complete

knowledge of the eigenvalues (1.14) has been discussed by Zayed [21] in the case n -2 and by

Zayed [22] in the case n 3 where o and o= are positive constants, using the asymptotic expansion

of the spectral function

O(t)- exp[-t(o,o2) as t0. (1.15)

Thus in the case n 2, Zayed [21,23] has shown that

4nt
+

8(n/) - II1

7 ’" g:(o)-T i0=,1- dQ+O(t) as t0 (1.16)

where 0 and K(Q ), (QeO) are respectively the total length and the cuature of 0 while

#=1 and K=(Q), (QeO:) are respectively the total length and the cuwature of O.
In the case n 3, Zayed [22] has shown that

V
o()-

Is, l+lsl+
(4t)3n

+
16t 1

where S1 I,x(Q) and NI(Q),(l) are respeotively the suac area, mean uaiure and Oaussian

eatre of the surface S, while S I,(Q) ad (Q),(0) ar respectively the surface area,

man uature and 8aussian cuature of the suTace S. Furihr interetations offoulae (1.16)
and (1.17) an be found in Zayed [21-23].

In Theorem 1, we generalize th resul (1.16) and (1.17) to the sewhen and= are positive

functions satisfying the Lipshitz ondition, by using ihe xprssion

{(,,) +)-, (1.18)

where P is a positive onstant.

In Theorem 2, we show that this generalization plays an impont role in establishing a method

to study the asymptotic behavior of the difference

(() l(a,, ,)), (1.19)

for large vales of where the three pairs of functions (,), (al,) and (,) are distinct and

satisfying the Lipschitz oondition and th summation is taken over all values of k for which

(,) The method uses an interesiing and impoaani Taubrian theorem due io Hardy and

Litilewood and developed by Titchmarsh [24].
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Theorems 3, 4 and Corollaries 1-5 contain further results which can be considered as a gen-

eralization of the results of Theorem 2.

2. STATEMENT AND PROOFS OF RESULTS

THEOREM 1. If the functions %(Q),QeOf (or S) and %(Q),Qeo2 (or S.) satisfy the

Lipschitz condition and if P is a positive constant, then in the case n 2

16P3 2P "
+2 {K?(Q [o,(Q )K,(Q
1024P,- o,

-2(Q)]}dQ+O(] as P, (2.1)

while in the case n 3

8ytP t,.2. 16tP
+ 24P’3, -1

128;tP -1

o,(Q)H,(Q) +--(Q)]}dQ + O as P . (2.2)

Note that the expression (1.18) is just the Laplace transform of the function tO(t) with respect to

and P > 0 is the Laplace transform parameter. With this connection we deduce that formulae (2.1)
and (2.2) can be considered as a generalization of formulae (1.16) and (1.17) respectively.

THEOREM 2. If the three pairs of functions (ol(Q), o:(Q )), (%(Q), II(Q )) and ((Q),(Q))

are distinct and satisfying the Lipschitz condition, then we deduce for that

[+o(K) in the case n 2, (2.3)

{,(.,) ,(p)}
,(0,,09.

+ o(3a) in the case n 3, (2.4)

where

and

al= Ioen[lz(Q)- II(Q)]dQ- Ioal[c(Q)- q(Q)]dQ,

bl Is2[fSz(Q 51(Q )]dQ + Is,[Ctz(Q ct(Q )]dQ

Formulae (2.3) and (2.4) can be considered as a generalization of the familiar formulae of

Gel’land and Levitan [25] for the difference of traces of two Sturm-Liouville operators.

Let us now give the proofs of Theorems 1,2. To prove Theorem 1, we shall use the Laplace

transform of Green’s function for the heat equation (A, )u 0, n 2 or 3 with respect to the time

t, and use S as the Laplace transform parameter.

PROOF OF THEOREM 1. With reference to [26, Sec. 2], let

1
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be the Green’s function of the expression (A s2)u in the domain Q _C R together with the boundary

conditions (1.12) and (1.13) on 0f2 respectively, where s is a sufficiently large positive constant

while x and x are points belong to . In (2.5), K0 is the modified Bessel function of the second

kind and of zero order, while - is a regular part of the Green’s function.

With reference to [2], we deduce that as x x the equality

(2.6),x ;- s ,x s ;- {o,o) + ?} {o,o + s}

where {,({)} are normalized eigenfunctions and s, s,, implies

(2.7)og +V 5,x.-s - 5,x.-2= s -x {(o,, o) +

Thus we get the formula

2 {(o, o9 +}- +,., 4=s=
g, ,{,-s’ dx. (2.8)

Using methods similar to those obtained in [14], [21], [23] we can show that

ffs’({.{" $2) dx =1 o"l J 0"2 ’-h{ fo.Oz(QQ fen..(QQ

512S4i-I

+ 0 as s oo. (2.9)

On inserting (2.9) into (2.8) and letting S2= P we arrive at (2.1).

Similarly, let - x_,x;-s (1 x_
4n[x_-x_ ’-(x_, ,;-sZ), (2.10)

be the Green’s function of the expression (5 sZ)u in the domain fa __. R together with the boundary

conditions (1.12) and (1.13) on S and Sz respectively.

With reference to [3], we deduce that as x x the equality (2.6) implies

+(x_,x;-s - x,x;-s =(s2-sZ),Yq {ix(o,o:)+sZ}{i.t(o,oz)+sZ}
(2.11)

Thus we get the formula

5: (..(o,. o=, + s._}_._ v lf.f(,- --ss+ -’ x_,x_;-s dx_. (2.12)

Using methods similar to those obtained in [16], [22], we can show that
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fs [H,(Q )- 3o,(Q )]dQ12ns ,-

7 fs{[H,(Q)_3c,(Q)],__[N,(Q)_2,(Q)H,(Q)64rrs,-

On inserting (2.13) into (2.12) and letting s"= P we arrive at (2.2).

Finally, we note that the proof of either (2.9) or (2.13) is omitted here since it is very similar

to those obtained in [21] or [22] respectively.

PROOF OFTHEOREM 2. With reference to [26], let us assume that a2(Q : a(Q ), (Q 0)

and O2(Q) (Q), (Q 02) and introduce the non-negative and non-decreasing function

() {,2)- (a,)}, (2.14)
(.)

moreover we let

{a(, z)- a(R,)} {,) +2(a,) + 3P}
(P)= .Z {,(a,) + } {,,(a,) + }

(2. s)

Using formula (2.1) first for the functions (a(Q), O(Q)), then for the functions ((Q), Oz(Q)) and

subtracting the second one from the first, we find after some reduction that

2 + + +0) as P (2.16)

where

az I[z(Q) (Q)][ )dQ f,[Rz(Q)- )][ Kx(Q) )- )]dQKz(Q (Q z(Q + a(Q a(Q (Q

Formula (2.16) can be written for any c < (,2) in the equivalent form

2 (+p)+(P)+.16Pe +0 as P. (2.17)

Further, noting that

() o ( ) (x ,
we get

d(X) a
as P (.la)

( +P) 4p

Applying a Tauberian Theorem of Hardy and Littlewood (see, for example [24]), we find that

e(l-x as x. (.9

Analogously, one establishes the asymptotic formula

Further, noting that
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where

ot(Q) min{o(Q), %(Q)},

(2.21)

[(Q min{ (’2(Q), [,(Q)},

(Q) min{o,(Q), et2(Q)

and the fact that as k the functions

IB(Q min{o2(Q), 32(Q)},

.k(4,e4)

X [a,(c, 3;) bt,(c2, [2)}, (2.22)

and likewise for (a,13) are asymptotically equal to gZ., we obtain (2.3) for the special case

%(0 %(0), (O ( of) and 132(0) 13(a), (O 02).
Similarly, we derive (2.4) for the special case %(Q)aa(Q), (Q S) and

(Q) a (Q), (Q $2) as follows: Using formula (2.2) first for the functions (a(Q), (Q)), then

for the functions (%(Q ), 2(Q )) and subtracting the second one from the first, we find for any

c < (%,) that

+ +0 as P (2.23)2
( + p)3

+ (P) 8np3a

where

On using the same nature of W(P), we write the integral in (2.23) in the asymptotic form

as Pm (2.24)
j, 16=e

Consequently, we deduce that

bl 3/2(.) -Z. as Z. oo. (2.25)

Analogously, one establishes the asymptotic formula

bx 3/2X {k((3/,,2,12)--l,k((/,l,l)} ~--Z. as L o. (3.26)

On using (2.21) and the fact that as . oo the functions (2.22) for (,) and likewise for (a,,)
b 3are asymptotically equal to we obtain (2.4) for the special case (Q) a(Q), (Q G Sa) and

(Q) ,(Q), (Q u sz).
In order to prove the theorem in the general case it is sufficient to apply the equality

{,(m,)-,(a,,,)}- E {,,(o0,o)-,(a,,)}

X {I-q(o0, o) la(ct2,12)}, (2.27)
.(,02) X

where
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%(Q)= max{ctt(Q),(Q)}, o;(Q)-- max{[,(Q),[2(Q)},

and apply the special case of the theorem which we just proved.

3. FURTHER RESULTS

COROLLARY 1. On using formulae (1.4) and (1.5) we deduce as m that

,Yl {g’(ct’’[52)-la’(czl’[3)}= - m +o(m) in thecase n 2, (3.1)

m + o(m) in the case n 3. (3.2)

Using Theorem 2 we easily prove the following Theorems:

THEOREM 3. Let the three pairs of functions (o(Q), o2(Q)), (oh(Q), 13(Q)), (ck2(Q), 13.(Q))

and the quantity a ,, 0 be the same as in (2.3). Furthermore, on the half-axis [c, +) let a function

](.) of constant sign be given which is absolutely continuous on each interval [c,d],d < o; further
xf(x)

we assume that the expression is bounded almost everywhere andf*(R)f(?,.)dZ. oo. Then as L c

we get

-,,(o,.og,x +o(1) f(t)dt. (3.3)

THEOREM 4. Let the three pairs of functions (Ol(Q), %(Q)), (Ctl(Q), 131(Q)), ((Q), 13:(Q))

and the quantity b ,, 0 be the same as in (2.4). Furthermore, on the half-axis [c, + oo) let a function

f(Z.) of constant sign be given which is absolutely continuous on each interval [c,d],d < 0% further
xf(x)we assume that the expression is bounded almost everywhere and f[ lf(:L)d?,. x,. Then as

X we get

-.,(,,,,,,9- +o(1) It It/2f(t)dt. (3.4)

PROOF. On setting

,(o,,o2) k

where the summation is taken over all values of k, for which t,(x,o), we deduce for any

< a(ch, %) that

Y /’[I.t,(ox, o2)] {ta(ch, 13) t.t,(ax, Ix)} Ak(k) (3.5)
(o,o) k

On inserting (2.3) and (2.4) into (3.5) we get easily (3.3) and (3.4) respectively.

COROLRY 2. On using the mean value theorem, we deduce for any c < g(%, o) that

k-1

2 /’[g(o, o)] {g(,) g(ax, x)} [’(k(k), (3.6)
g(o,o) k

where (al,) g(o, oz) g(,) and the summation is taken over all values of k, for which

Consequently, if f() , > 0 we deduce for m that in the case n 2
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.{p(,2)-lx(cq,[5)--- m +o(m’),

while if f(Z.) Z.’,i - we deduce for m that in the case n 3

(3.7)

ib 62 ( a

--if-m) + o(m z’ v3) if >--
(2i + 1) 2

--:_In --m +o In if i---.
v 2

(3.8)

COROLLARY 3. Assuming that the function f(Z.) ofTheorem 3 has the form: f(Z.)- ZJ, -1

then we deduce as that

al -,i+1 1)2(i+1)" +o if >-1,

,k((]l, 02) {lLI,k((Y.2,12) ILI,k(C{I, I1)} (3.9)
(o,o2) k [ if =-1.

COROLLARY 4. Assuming that the functionf(,) ofTheorem 4 has the form [(Z.) .i, -3/2

we deduce for Z. that

bt ..(2//3a + o((2 +3) if > -3/2

(3.10)la,(ol, oz){la,(h,l2)_,(ctl, l)} J(2i + 3)
0, ,,(o,.o2), x l_.ln.+o(ln. if i--3/2.

COROLLARY 5. If t.t,(ctl, I) " 0 we deduce for m that in the case n 2

,.q(tl,[5)=m +- n -[m +o In -[m (3.11)

while in the case n 3

,1,((1, I)
"m + b m 1/ + o(m 1/3). (3.12)
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