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Abstract. We consider the problem of well-posedness and regularity of solutions for a dynamic von Khrmhn |)late

which is clamped along one portion of the boundary and which experiences boundary damping through "free edge"
condmons on the remainder of the boundary We prove the exmtence of unique strong solutions for this system
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1. INTRODUCTION. In this paper, we consider the well-posedness of the yon Kirmn
system given by

(1.1)

where we assume fl C R, with sufficiefftly smooth boundary F F0 U F1. Here,
represents Poisson’s ratio and the boundary operators B and B are given by

(1.1)(5) Bw [(n n)w, + n,n(w,, w)]

Also, F(w) satisfies the system of equations

A2F --[W,W](1.2) F F 0 on E=F(O, cc) }
where

[’ ] Oz-- Oy--5 + Oy-- Oz- OxOy OzOy"

The well-posedness and regularity of such a system is both a delicate and interesting problem.
Such results are important in solving the problem of stabilization for system (1.1). Usual PDE
techniques require the existence and uniqueness of "smooth" solutions to justify computations used
in determining the stability and controllability of dynamical models. The stabilization of thin plates
(and particularly the yon Krmn system)is of current interest in the literature (see (Ill, [2], [3],
[4], [5])). The von Krmn nonlinearity poses many difficulties in obtaining the well-posedness and
regularity results we seek. Difficulties also arise from the higher order boundary conditions on E.
To handle these difficulties we adapt abstract results proven in [6] to our more difficult boundary
conditions.

This paper will proceed follows. In Section 2 we state the main results of our paper. After
this we state the appropriate abstract results from [6] which will be useful in the proofs of our results.
In Section 3 we prove the results stated in Section 2.
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2. STATEMENT OF RESULTS. Before stating the results we i1tend 1o prove, we defillc
meaning of "x(’ak sollilions" through a variational equality. Let

kVe define tle SlaCcs

with norm

and

with norm

Ow }o() =., H() w 0 o. ro

HLo( {w ( H’(f)" w 0 on Fo}

Ilwll/t0n
We define the solution space H0( x Ht0( ).

DEFINITION 2.1. A function pair (w, tot) C((0, T); 7"() is said to be a weak solutzon to system
(1.1) if (W(’, 0), Wt(" 0)) (1130, ll31) aIid ll3 satisfies the variational equation

where here and throughout the paper (.,.) denotes either the L(fl)-nner product or the duality
pairin9 between Ho(f and [Ho(/)]’, as is appropriate by context, and < .,. > represents the
L(r)-inner product. We note that (2.1) holds in H-[0, T].

THEOREM 2.1. Given initial data (too, w 7"[, there exists a unique weak solution to system
(1.1), (w,w,) C([0, T),’H) for any T > O.

(2.2)

THEOREM 2.2. (Regularity): Assume in addition to Theorem 2.1 that the initial data satisfy

(i) Woe H3(fl); 1131

(ii) Awooxwo. + (1 t)B, wo -w,o } on r,.
o, + (1 #)B:wo w -yw

Then the unique solution to (I.1) has the regularity

(i)
(ii)
(iii)

(w,w,) C((O,T);(Ha(a)H.o(a)) H.o(a));
w,, C((o,T);/o())
equation (.I) is satisfied for evevy [0, T).

THEOREM 2.3. (Strong Regularity): In addition to Theorems 2.1 and 2.2 we assume that

(i) Wo H’(fl); w, H3(fl)CI H-o( ).

(2.3)

0t(ii)
AWo+ (1 p)Bw

o.,,(o) on F,
ou
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u’hcre u’,t(O) s drt,_d.rrom the tqualion (/.1}. 7’htn th unique .oluton guaranted by Theorem

2.1 has the following regularlg properties:

(i)
(ii)
(iii)

Moreover, equation (1.1) holds n the L2-sense for rach [0, T].

The proofs of Theorems 2.1-2.3 will be based primarily on the work of Favini and Lasiecka [6].
That paper deals with abstract problems of the form

(2.4)
w(t 0) w0; wt(t O) (l,1

which will be described in detail shortly. Our intention in this paper is to recast system (1.1) in the
abstract framework of (2.4). We will then show that the results of [6] may be applied directly to or

may be adapted for our system. For the purpose of self-containment, we now state the necessary
background and results fi’om [6] which will be useful in this present context.

Let .A be a closed, positive self-adjoint operator on a Hilbert space H with D(.A) C H. Let V
be another (appropriately chosen) Hilbert space such that

"D(.,41/2) C V" C H C V’ C [D(A’/)] ’.
We assume that kt V V’ is both bounded and boundedly invertible so that the restriction
2 Mitt with domain D(kT)= {u V" Mu 11} gives that V D(lt/).

The operator G is defined on another Hilbert space, U. It is assumed that G U H is a

bounded linear operator such that G’.A (D(.Aa/); H).
Finally, the nonlinear term " D(41/) V’ is assumed to be Frech(!t differentiable with

derivative, denoted D’, satisfying

IlOJ(u)hllv <_ C(llullv(.,zi)llhllva,/i.

We note that for our purposes, f 0.
We now state the results from [6] which form the framework for Theorem 2.1-2.3.

THEOREM 2.4. (F-L Theorem 2.1): For each initial data (wo, w) D(.A1) V, there exists

To > 0 such that there exists a unique weak solution (w(t), wt(t)) to (2.4).

THEOREM 2.5. (F-L Theorem 2.4): In addition to the hypotheses of Theorem 2.4 u,e assume

that for all (w, wt) C(0, T0; D(.A/) V) and such that G*.Awt L2(0, T0; U) the following
inequality holds for all [0, To):

(2.5) (.T’( W( T ), Wt(T )dr

+ C(ll(wo, w,)llv(a,/)v) Co.

Then the weak solution (w(t), wt(t)) is 91obal for any T > O.

THEOREM 2.6. (F-L Theorem 2.2): Assume that the init’al data (wo, wl) satisfy

(2.6) (i) w, D(A’/)

Moreover, assume that

(2.7)

(ii) A(Wo +/3GG*.Aiu

11.,4-1/:D.(w)hlls-s < C(llwllv(.a,))llhllv.
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(’. ’,)E (’(0. 7’:D(.,4112) x

II’t E (’(0.7’" I’).

By showing tlial svsi(’ill (1.1) Call I)(" t’orillullt{’d ill ill(" lrllli’,ol k of ill,’ llsli’<i’l ’(llialioii (7.1)
while’ salisfyin
Por ihe additional reliilarity iveii ii The’old’ill ’2.3, w" will il’<’(! all addiliolial 1)root" wlli{’ll <1o’ iiot

follow directly frolll l’f’Sll]l Of [6].
3. PROOFS OF THEOREMS 2.1-2.3. l,(,t tl,o(fl ), H L() an4 l; (L(F,))3.

}Ve define

(3.1)

Ae A2t, with domain

D(A) Iw Hq(f) lI.o(f) A,,, + (1 ,)B,,t’ 0

and Aw+(1-t)Bw=Oon F

which is well-defined, positive and self-adjoint. By the results of Grisvard [7], ve see that D(.A/2)
H0(fi ). We also define the Green maps, G [Is(r) HS/2+’(), G2 H’(F) HT/2+’() and

G3" H’(F) HSl2+’() by

(3.2)

Glh=vv=:v Al,=0 inQ
0v=,=0 on o

(3.3)

and

Oh
(3.4) G3h G2 0---"
A straightforward computation shows that for w D(.A),

Otv
(3.5) G;A, -bTlr,

GS,4w -lr,.

a,, 1,.
L a e [D(r)]. Dnn C -C,,,,- C,,- Cz()., Thn C [(r)] D() is bo,naa

We now introduce the operator M #(M) H() L().

Mw (I A)w +MG.
We observe that for v, it, e H0 (),

(3.6) +v(
(v, w) + ’(’, ,),
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where we have interpreted the t.AG-57 term in the sense of dualily, lTsing (3.5). we see that
M. H0(Q [H0(Q)]’ is an isomorphism (by tim Lax-lilgran Zheoren).

By a straightforward comptation, we see that

(3.7) (Aw. ) a(u,, )

and that

(3.8) < G’Awt, G’A+ >= <wt-,p) + <, 0,,

Defining (w) [w, F(w)] and using (3.6) (3.8), we can now rewrite system (1.1) in the form
of (2.4).

To see that the yon Kfirmn nonlinearity is Frecht differentiable, ve define the operator

(3.9) Aow Aw with O(A0)= If(Q) H(fl).
Then F(w) -A[w,u,] so that (w) -[w, A[u’, w]]. By straighlforward (but somewhat
lengthy) computations we see that

(3.0) n(,,)h [,, A3’[o. ,,]] + [.. A[,,,
To prove that [D(w)h[[[,o(n)], C(]W[[Ho(a))][h[[Ho(a), we use the following lemma, which is

proved in [3].

LEMMA 3.1. The mapping (u,v,w) [u, A’[v, w]] is contin,,ous from [H(fl)]3 H-(f)
forO < e < /2.

Consequently, we have

Remark. An interesting estimate which arises in the proof of Lemma 3.1 is

(3.11) IIAff[w, ’]lIH-’() < CIl’olIH()ll"llH().
This will be useful to us later in the proof.

PROOF OF THEOREM 2.1. To complete the proof, it suffices to show that (2.5) holds.
Let (w, w) C([0, T]; H-o (Q) Ho ()). Then

[Jo w] F(w)dfldt

d

d

f(F(0))-4

where the lt inequality holds by (3.11). Hence, (2.5) holds with C 0.

PROOF OF THEOREM 2.2. It suffices to verify (2.6) and (2.7) and to apply Threm 2.6.
We note that (2.6)(i) is satisfied by hypothesis (2.2)(i) in Theorem 2.2. As for (2.6)(ii), we see that
in p.d.e, form this is equivalent to

o [Ho(a)]’
wo 0 on Fo
Awo + (1 g)Biwo -o
+(1-g)Bwo=wl- J

onF.
o 0r

But then if wo q H(a) H0(a) and (wo, w) satisfy the compatibility relation (2.2)(ii), we see
that (2.6) must hold also.
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\Ve ow prow (2.7). X\c ,.,-(1 to siow lal for t,’E llj-o(.q), / E Ii,,() a(I ,2 E !!o() float

liccalling (3.9)-(3.10). we ((,,,,l,te

where we have used Lend,ha 3.1.
We now compute

I([.’. A’[... h]]. )1 I([,,’. ]. A’[.,.
(3.i3) _< I1[.’.

CIl,..ll.0 (.)I111.()II..g
(;)+/ [.,..

where we have again used the results of Crisvard [7] to give ,,s (Ao’ II+’().
We now examine the term IlA3/+/[u h]llL(). Let t:, E ( 3/4-/

--o so that (again by Gris-
yard’s results) we have ’ E t/3-(fl) lt(fl). Then

(3.14) I([w,/], ’,)1 I([,.,, e,]. h)l Cll-,ll.,(. (,e, + e,;= + ,.,..)h d

But then since h E H() C L(), q < , and by }]5]der’s inequality, we have, for example,

Using the Sobolev imbeddings (see [8], Theorem 7.58 p. 218), this implies

where el Substituting back into (3.14), we obtain2+o

I([,,,. ]. h)l _<
<_ CIl,,,ll,,(,)ll/’llm-.()llhll..(,).

Putting (3.13)-(3.15) together implies

(3.16) I([w. A’l[w, h]]. )1 < Cll*ollo(mllhll,o()llll.o().
Then taking (3.12) with (3.16) gives us the estimate in (2.7). Applying Theorem 2.6, we have the
result.

PROOF OF THEOREM 2.3. Here we would like to use the following strong regularity result
from [6].

THEOREM 3.2. ([6] Theorem 2.3- Regularity Revisited): In addition to the assumptions of the
previous theorem (our Theore,n 2.6) assume tha! iF is twice Freclldt differenliable D(.A/) V’.
Moreover, assume

(3.17) .1-’ E.(H’D(.A’/2))
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(3.18) f("’o) ll"

771 II,

(,,,,. ,.,,,) (’([o. 7’}. z(A’/) i).

(3.21)

and the equation

(3.22)

holds for all > 0 on H.

A(,,. + (;c;..4,,.,) :(,,.) c([o. 71: n).
A(,,., +.,,c;c,"A,,.,,)- D(,,.),,., (-’([0.7’]. I").

J/..,, + A(,,.(t)+ ,c;a’A..,(t)) 7(,,,(t)) o

Unfortunately, system (1.1) fails to satisfy hypothesis (3.17), since for general L-functions,
w-I cannot recover both boundary conditions on F0. However, to follow the proof of the theorem
given in [6], we need only

(3.23) M-iA(wo +/3GG’Awi) + M-.Y’(Wo) D(A’/),

which, in terms of system (1.1) requires wtt(0) D(.A/). By virtue of hypothesis on w0, w

D(.A/), it suffices that ’-a: L(gt) H(). But this follows directly from the definition of ..
Consequently, system (1.1) satisfies the weaker, but sufficient, hypothesis (3.23). We now show that
under the hypotheses of Theorem 2.3, we may apply the modified version of Theorem 3.1 to system
(1.1).

By straightforward computations one can see that the yon Krmn nonlinearity is twice Precht
differentiable with

D.T’(w)(h,v) [-2Al[w,h],v]
+ [-2A’[v, h], w] + [h, -2A-’ [w, v]].

By Lemma 3.1 we see that for w,h,v H.o(Ft with e < 1/2,

IIDY(w)(h, ,,)lltnt.o(,r < IID.7-(w)(h,,.,)lln-,(a)
_<

By hypothesis (2.3)(i), we see that (w0) L(fl) is trivially satisfied.
In terms of the p.d.e., (3.19)(i) is equivalent to (2.3)(i) with (2.2)(ii). We also observe that by

(2.4)

--’[A(wo +/c.c;-.,4,,.,,)- m(,,,o)] ,.,.(o),

So that the p.d.e, equivalent of (3.19)(ii) is

A,,,, e [H0(gt)]’
Ou

Aw, + (1 p)BlWl _-uwu(0)
0 j, on 1-’o. + (1 )Bu, u,- -;w(0)

But these are precisely satisfied by hypothesis (2.3)
Applying the results of Theorem 3.1, we obtain the regularity results of Theorem 2.3.
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