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ABSTRACT. Equations of steady flow of a plane micropolar fluid are transformed to the

hodograph plane by means of the Legendre transform function of the streamfunction. Results are

summarized in the form of a theorem, some flow problems are investigated as applications of this

theorem and exact solutions and geometry of the flow axe obtained in each case.
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1. INTRODUCTION.
Flow of a micropolar fluid has been studied by many investigators using the theory and

constitutive equations first given and further developed by Eringen ([1], [2]). He presented the

theory which is a generalization of the theory of viscous fluids by taking into account the local
microrotations and microinertia. The mathematical model underlying micropolar fluid may

represent liquid crystals, suspensions, animal blood and the fluids consisting of dumbell
molecules. The problem of finding exact solutions of governing equations of micropolar fluid

flows presents insurmountable mathematical difficulties due to the fact that these equations are

nonlinear. However, exact solutions have been obtained by many researchers in certain

particular cases, mostly when the quadratic convective terms vanish in a natural way.

The present study deals with application of hodograph transformation to obtain exact

solution of the equations governing the steady plane flow of a micropolar fluid. Chandna and et

al ([3]-[9]) have applied hodograph and Legendre transformations to investigate steady plane
viscous flows, non-Newtonian flows and constantly inclined, aligned, transverse and orthogonal
MHD non-Newtonian flows.

First, the equations of the flow are transformed to the hodograph plane interchanging the

role of independent variables x,y and the components of velocity vector field u,v, then

introducing a Legendre transform function of the streamfunction, all equations in the hodograph
plane are expressed in terms of this transform function. These results are put in the form of a

theorem and its corollary. Some interesting flow problems of both physical and geometrical
importance are studied as applications of the theorem and exact solutions are obtained in each

case.

2. BASIC EQUATIONS.
The basic equations governing the steady plane flow of micropolar fluid in the absence of
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body forces and body couples arc given by - + o

Ou O Op Ou Ow (2.2)P (’ + ’ )= -+ -(+ ) ou
p (u Ov Ov Op k OU Ow+)=-- +(,+) .)

pj (u Ou Ou Ou + 02u) (2.4)+ v --) 2ku + kw + 7

where (u(z, U), v(z, U)) is the velocity field, (0,0, u(z,y)), is the microrotation field, ,v v,-uu, p is

the pressure, p is the fluid density, j is the microinertia and p,k,’ are material constants.

Equations (2.1)-(2.4) is a system of four equations in four unknown functions u(x,y), v(x,y),
u(x,y) and p(x,y).

Introducing

H(x,y) 1/2 p(u + v) + p, V 0 + Oy (2.5)

equations (2.2)-(2.4)can be rewritten as

OH pvw + k Ou Ow
Ox (# + k) -y (2.6)

OHoy puw- k Ou + (l + k) Ow (2.7)

pj (u Ou Ou+ ) z+ + v . (2.8)

Eliminating H(x,y)from (2.6) and (2.7), we ge

p (u -o-dOw Ow , w+ v --ff) k V + (# + k) V (2.9)

3. EQUATIONS IN THE HODOGRAPH PLANE.
Let the flow variables u(x,y),v(x,y) be such that, in the region of flow, the Jacobian

0(,)J(x,y)- O(x,y) # 0, 0 < JI < .
Considering x, y as functions of u, v, we can derive the following relations:

Ou -Oy, Ou jOx Ov Oy Ov jOx (3.1)a o- o,’ J’ o-

J(x,y) O(x,y) -LO(u, J (u,v) (3.2)

Of O(f,y) ,O(f ,y) O(f ,y)

O(x,fOf O(f,x) jO(- :f) _- (3.3)o- o(,u) o(,, v) (,-)
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where f(x,y)= f(x(u, v),y(u, v))= f (u, v)is any continuously differentiable function.

Using the above relations, we can transform (2.1), (2.9) and (2.S), respectively, into the

following system of equations in the (u, v)-planc

cox Oy
0 (3.4)o+

where

[O(x,2 Q,)p(vP, + uPs)= -k
[ -((,,v) -}+O(JQ2,y

i)(x,- P,) i)(- P,y)

pj g (vO + uO) 2k-# + k + 7 g
[ -0-(,, v)+ Y((, /

(3.)

(3.7)

a(,
o(.,,)Q, Q,(u,v) O(u,v)’ Q: Q:(u,v) O(-#,y) (3.8)

Equations (3.4)-(3.6)is a system of three equations in three unknown functions x(u,v),y(u,v)
and -# (u,v). Once this system is solved for x(u,v),y(u,v) and -# (u,v), we can determine

u(x,y),v(x,y),w(x,y),u(x,y) and p(x,y) for the system of equations (2.1)-(2.4) governing the

steady plane flow of a micropolar fluid.

4. EQUATIONS IN LEGENDRE TRANSFORM FUNCTION AND (u,v).
The equation of continuity (2.1)implies the existence of a streamfunction (x,y)such that

0 0/, (4.1)de= v dx + u dy or - v, - u

and equation (3.4) implies the existence of a function L(u,v), called a Legendre transform

function of the streamfunction (x,y), so that

OL cOL (4.2)d y du + x dv or -y, -=x
Functions (x,y) and L(u, v)are related by

L(u,v) v x- u y + b(x,y) (4.3)

ui=g (3.2), (3.3) d (4.2), eqtio (3.5) d (3.6) be tfomed, respectively, into

the following equations

O(OL/ov, QI) O(OL/Ou, Q2)}p(vP + uPs) k [ (u,-v’ + cO(u, v)

.O(i)LlOv, P,) c3(i)L/cOu,- P)+ ( + ) L o(,,) + o(,) (4.4)J
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P7 7 vQ + uQ 2k- + km+ 7 7 {O OL/Ov
u _v_ -}O(OL/i)u,J Q) (4.5)+

; (4.6)

-7 ( o2L O2L’ (4.7)k Ou + Ov ]

O(OL/Ou,o(o/o,, P( ) (4.s)P’(’) o(,,)

O(OL/Ov,-O
a(u, v) (4.9)Q,(u, v) (u,-i Q:(u, v) O(OL/Ou,y

We can summarize the above results in the form of the following theorem.

THEOREM. If L(u, v) is the Legendre transform of a streamfunction of a steady plane flow

of a micropolar fluid and F (u,v) is the transformed microrotation function, then L(u,v) and- (u,v) must satisfy (4.4) and (4.5) where J (u,v),(u,v),Pl(u,v),P(u,v),Ql(u,v) and Q(u,v) are

given by (4.6)-(4.9).
Once L(u,v) and (u,v) are obtained, the velocity components are found from (4.2). Using

the velocity components u(z,y),v(z,y), we can determine p(x,y)and u(x,y)in the physical plane.

Now, we express (4.4)-(4.9) in terms of polar coordinates (q,0)in the hodograph plane by

defining
q u + v,

By partial differentiation, we can get

Of Of" sin 0 Of*
O--d cos 0 --W-- O0’

O(f, g) a(f’, g*)
a(u,v) a(q,O)

tan- ’(I).

Of sin 0 + cos 0 Of"
0--- -- oo

O(q, O) O(f’, ’)
i)(u, v) q a(q,0)

where f(u,v)= f*(q,O), g(u,v)= g*(q,8)are any continuously differentiable functions.

Denoting L*(q,O), v*(q,O), J*(q,O),w*(q,O) to be the respectively the transformed functions of

f(u,v),-a (u,v),J (u, v), (u, v) in (q,O) crdinates, we can write (4.4)-(4.9) in pol crdinates

follows: O(sin 0--+ q 00’p(vP; + uPS)= - O(q,O)

O(cos 00L*Oq
O(q,O) + q O(q,O)

<cos O OL* sin O OL" p)]+ Oq q 00’
o(,o) (.o)

[0(sinOOL" csOOL" )7_ -+ q
pj J*(vO; + uQi 2ku" + kw* + O(q,O)

O(cos 00L" in O OL"

+ Oq q 00’
O(q,O) (4.11)
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(4.12)

w" q, O j.{ O2L + +O2L OL" ) (4.13)

O( sin 00L* cos 00L" )+ 11)*-q q
P(q, O) - O(q, O) (4.14)

O OL* sin O OL* )Oq q O# w"
(4.15)P(q, O) - O(q, O)

sin # OL* cos O OL" )-+ q i)O,
(4.16)Q(q, O) - O(cs O OL---* sin---8 OO-" F’q

Q(q, O) O(q,O) (4.17)

Once L*(q,#) and *(q,) are known, we can determine u(x,y),v(x,y), and other flow variables in

the physical plane.
From (4.10)-(4.17), we can have the following corollary.

COROLLARY. If L*(q,) is the Legendre transform function of a steady plane flow of a

micropolar fluid and ,*(q,O) is the transformed microrotation function, then L*(q,O) and ,*(q,O)
must satisfy (4.10)-(4.17).
5. APPLICATIONS.

In this section, we study various flow problems as applications of the theorem and corollary.

Application 1.

Let L(u,v)=A u+B v+C u+Dv+E (5.1)
be the Legendre transform function, A, B, C, D, E are arbitrary constants, and A, B axe nonzero.

Using (5.1)in (4.6)-(4.9), we obtain

1 A + B P1 0, P 0,4A----’ w 2AB’

o ov (.2)Q1 -2B ---, Q 2A 0--V-

Employing (5.1) and (5.2), equations (4.4) and (4.5) yield the following system of equations

fo (u, v)
B 0 A 0

Solving (5.3), we get

( e k(A + B)
2p--’,o A u o-- B v 2k- + 2AB (5.3)

/ 4Bk (A / B) (5.4)p---- / 4AB
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16k

where c is a nonzero arbitrary constant.

Condition (5.5) implies that both A and B are nonzero, A # B, and have opposite signs.

Substituting (5.1) in (4.2) and solving the resulting equations, we get

u(x,y) (Y + C) v(z,y) (z D)
2A 2B (5.6)

Using (5.6) in (5.4), (2.6), (2.7) and (4.3), we obtain u(x, y ), p( x, y and g,(x,y) as follows

{ } k(A+ B)c, pj D) (y 4AB(z,y)= (- +c)+ (5 7)

kClXp(x,y) {(x D) + (y + C)} clPjY
2A 8AB + Po (5.8)

gz(x,y)= -41-{(x-D) (y+C)}B -t- A +E (5.9)

where Po is an arbitrary constant.

If L(u,v)= Au2+ Bv2+ Cu + Dv + E is the Legendre transform function of a steady plane

flow of a micropolar fluid, then the flow in the physical plane is a flow with hyperbolic stream

lines, and the flow variables are given by (5.6)-(5.8) where A and B are nonzero, A # B and have

opposite signs. From the condition A # B, and (5.6) it follows that a steady plane flow of a

micropolar fluid cannot be a vortex flow.

Application II.
Let L(u, v) (A u + B)v + C u + D u + E (5.10)

be the Legendre transform function, where A( 0),B, C,D,E are arbitrary constants.

Employing (5.10)in (4.6)-(4.9), we get

2Cj
A’I A, P,=0, P=0,

Q, A O- Ol 0-
---ff Q 2C -ffff A (5.11)

Using (5.10) and (5.11) in (4.4) and (4.6), we obtain the following system of equations

Ou A OuOv + 1+-- 0

PJ (Av + 2Cu) 0- Au 2k + A
Solving these equations, we get

A
where c is bitry constt. 2k

Procding in the previous section, we c obtNn the following solutions

(, (- v(,l _C + +-eC
A A

u(x,)= -c A +

(5.12)

(5.13)

(5.14)

(5.15)

(5.16)
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(5.17)

/,(x,y)=- (x- B){(x-B) (y+ D)}A + C + E (5.1S)

where ro is an arbitrary constant.

If L(u, v) (Au + B)v + C u + Du + E is the Legendre transform of a streamfunction of a

steady plane flow of a micropolar fluid, then the flow variables are given by (5.15)-(5.18) when

A pj/2k, and the flow in the physical plane

(a) a flow with Cx + azy + (AD- 2BC)x constant as streamlines when C 0 in

L(u,v),
(b) a flow with rectangular hyperbolas, (x-B)(y+ D) constant as streamlines when

C 0 in L(u, v).
Application Ill (Spiral Flow).
Let L*(q, O) Cllnq + CO, CI O, C 0 (5.19)

be the Legendre transform function of a streamfunction, where C and C are arbitrary constants.

Using (5.19), we can evaluate J*,w*,p,p,Q and Q in the following form

q4g*=
(C1+C)’

w*=0, P;=0, P=0

QI, --1 (C sin 0 + C cos O) -0 --1 (C cos 0 C sin O) OU*oq
(c, i o + c co o) (5.20)Q2=. 1 (C1 cos 0- C sin O) + Oq

Employing (5.19) and (5.20) in (4.10) d (4.11), we obtNn, respectively,

Ou Ou++0u"=0 (5.2)
Oq

(c +

Solving (.21) and (5.22), we get

u* =0 (5.23)

which is a triviM solution. Therefore, a steady ple flow of a micropol fluid cannot be a spiral

OW.

Appfition (Flow).
Letting L*(q,O) aao + a, aa 0 (5.24)

d procding as in the previous section, we obtNn

q4
J*= A’ w*=O, P;=O, P=O

AI( Ou* co,sO Ou’)Q=-q sin O Oq q O0

AI( Ou* sin O Ou*)q oo (5.25)
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where A and A are arbitrary constants.

From (5.26) and (5.27), we get
u" =0 (5.28)

which is again a trivial solution.

fluid.

Therefore, a radial flow is not possible in a plane micropolar
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