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Abstract. Sequential fixed-width confidence intervals are obtained for the
scale parameter r when the location parameter 0 of the negative exponen-
tial distribution is unknown. Exact expressions for the stopping time and the
confidence coefficient associated with the sequential fixed-width interval are
derived. Also derived is the exact expression for the stopping time of sequen-
tial point estimation with quadratic loss and linear cost. These are numerically
evaluated for certain nominal confidence coefficients, widths of the interval and
cost functions, and are compared with the second order asymptotic expressi-
ons.
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1 InCroducion and Preliminaries.
Start and Woodroofe [1] have considered the risk efficient estimation of the scale parameter a

when the location, 0, is zero and studied some of the first order properties of the sequential pro-
cedure. Govindarajulu and Sarkar [2] have considered the risk-efficient estimation of r when 0 is
unknown and studied the second order properties of the stopping time and the regret. Govindar-
ajulu [3] has studied the second order asymptotic properties of the fixed-width interval estimation
procedure for tr when 0 is unknown. Mukhopadhyay [4] has considered risk efficient estimation of
the mean of a negative exponential distribution. Here we derive exact expressions for the stopping
time and confidence coefficient of the fixed-width interval estimation procedure and for the stopping
time associted with point estimation with quadratic loss and linear cost, and compare them with
the second order asymptotic expressions.

Let X1, X,..., be an i.i.d, sequence of random variables having the density:

f(z" O,a) r-1 exp{-(z O)/tr} for z > 0 and zero elsewhere, (1.1)
where -o < 0 < o and r > O.

We wish to estimate tr by tr,, & where

r,, -](Xi Xa,)/(n 1) and Xx, min(X,... ,X,). (1.2)
I=l

From Epstein and Sobel ([5], Corollary 3) we have that

Yn 2(n- 1)o’n/r _d X,(.-,) (1.3)

where X, denotes a chi-square variable wit h k degrees of freedom.

Fixed-width Confidence Interval Estimation of .
Let I,, (tr, d, r,, + d) where & . is given by (1.2). Define for z > 0

b(z) (2r)- xexp(-t2/2)dt. (2.1)
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Set (z) -a for 0 < c < 1/2 and let {z,,} be an sequence of constants converging to z. In
particular, if z,, is the (1 o/2)th fractile of the t-distribution with n degrees of freedom, then

z. z + a-’A0 + o(n-’)} with A0 (1 + z2)/4
(see, for instance, Woodroofe [6], p. 993)). Now, for large n (using the asymptotic normality of
(n 1)1/2(a,, a))

P(a E I,,) > c implies that ((n 1)’/2d/a) > (z); or n > [zUaU/du] + 1, (2.2)

where [.] denotes the largest integer contained in (.). Since a is unknown, then we resort to the
following sequential rule:

R’N N(d)=t+lwhereform>2
inf{n>m’n> z.,r./d }.

After stopping at N, the confidence interval for a is given by

1iv (a/v d, a/v + d).

The stopping rule (2.3) can be rewritten as

(2.4)

inf{n > m" S, ] Ui < cn<’L(n)},
t-’-I

where U, are i.i.d, as X, c 2d/az, a 3/2 and

L(n) + ("d A)ln + o(n-’).

Now, we will state in Theorem 2.1 the ge,,,’ral result of Woodroofe ([6], Theorem 2.4) which will
be used in the sequal.

THEOREM 2.1 Let F denote the distribution of U,. Assume that

F(x) < Bz" for all x > 0

for some B > 0 and a > 0. (If the preceding condition is satisfied for all sufticiently small z, then it
is satisfied for all z with a possibly new B but the same a). Let EIXI < for some r > 2. Also
assume that U1 has a density f which is continuous a.e. and that some power of the characteristic
function of U1 is integrabl,.. If r(2a 1) > 4 and ma > , then

as c 0 where

E(t) A + --# Lo a/t r l +o(1)---[(- I)2/ + r1 n-’E{(S,, nol)+ }t’
2

=(a-1)-’, EU,,r= vU, andA=(/c).
Thus applying Whrem 2.1 with (- 1)- 2, # EU 2, r var U 4, Lo -&o,
Oc-, Br- 4 and

(,) (/a) + (a/) -Nt(s al+/ (.)

Furthermore, if denotes the (1 /2) fractile of he C-distribution with n de of frdom,
then (since

( -(/el (/ -{(s a*} + o( . (.

Also from Woodroofe ([6], p. 986) we have, after specializing from gamma to X density and
performing linear interpolation in his Table 2.1, we obtain
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n-’E(5,,- :b,) + 1.438.
n=l

So
E(t) (az/d) + (z’/2) 2.,138 + o(1) as c 0. (2.7)

3 Exact Expressions for the Expectation of the Stopping
Time and the Confidence Coefcient.

In this section we derive the exact expressions for the stopping time and the confidence coefficient
associted with the fixed-width confidence interval estimation and the stopping time associated with
point estimation. Towards this, we need the following lemmas. Throughout this section we assume
that zn z.

Let A (az/d) and S’_ be the sum of i- independent standard negative exponential random
variables and let

(-l)zl/2/Aa/U for/>_m
b,-1

0 for _< m- 1.

Then the joint density of S_1 ,5’7. is

{(. 2)’}.... m-1 0 < lm-1 < < ln_ < (3.1)

Lemma 3.1. Let A3(u f]-2 A3_,(v)dv for j > m, where A,(u) u’-/(s-2)!, for 2 < s < m.
Then

-’ b_)’-" ,J > rn (3.2)a(u) A,(b_) (u

= (j-s)!

By simple calculation the proof follows.
Lemma 3.2. We have, for j > m

with

P(t>J)--e-b’-l{-’mi(ba-1)+l}’1=3

P(t > m)=

PROOF. P(t > m)=
Consider

(m- 2)

P(t > j) P(S_ >’b,-x,i m,...,j).

Since the b,’s and the S are increasing in i, by Lemma 1, we have

f r f-P(t > j) dP -1 ca du_i,... S_ ca du_i
--1 =bj-1 Jura-bin =bin-1

e_,_ u du_du du:_

If we define

A(u) A_,(v)dv

then

P(t > j) e-"A3(u)du
--1

-,_1,(,_)+ -,_()
1--1

after performing integration by parts once. By repeated integration by parts process we obtain the
desired result.
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RI,:MAI< 3.1. Nolice il,al, l)(l > ) for 0 _< _< t since/,_ 0 for 1,2 t I.
EMARI 3.2. e colllptll<, l,h<, A recursively usig L<’mna 3.1 and conl)Ule P(I > j) by usi.g

L<’mma 3.2 and using the lal, ler one can conl)ute

1,:’() ,, + I’( > j). (3.3)

An Exact Expression for the coverage ProbabIty.
Here e derive an exact expression [or t;,e coverage probability. Towards [hs e need the

[ollong e]ementary result.
LEPTA 8.8. Le (c) (+ c). Then

(- )( +/)
_

when, [,=(c)] or when n e [,,,(c)] + where

.(c) (1/){(. + 4) .i(. + 4)I}.
and [.] denotes he largest integer contained in (.).

Furthermore,

(i). n(c) < +, if, > 1/2, n=(c) k +, if, 1/2, and

(ii). ,(c) > + for all .
PROOF. The proof follows from solving the following equation

(- )(1 +/) (, ).
In order to obtain (i) and (ii) solve the corresponding inequalities.

Let &i- (i 1)i/=/A/, m.... Then

Ee(-as.+a,z=-)

Z P{<n-1)(’-z/ a_, ("-1)(1+z/,

(.)

In order to evaluate we consider the following ranges for the summation vriable n.

Case 1. Let n be such that nl/lJ1/= S (1 z/), that is

In his range the probability of each summand is zero.
Case " 0-z/) < nlU/All= J (1 + z/). That is

I= (n- 1)(1- z/) < :-1 < (B- 1)(1 + z/) S*

( 1[1[ ) )__*__
min-1).
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So

whet@

and

{,,[(,f-) +
P ((n- 1)(1- z/V) <_ S:_

__
5n_l,

Furthermore, we can write

(3.5)

(3.6)

"/1

[(vS+)
S* -(1 z/V){P( ,_>(n 1)

rn,[(V-- z) ]+

S,*_ > b,-x,m <_ <_n-l] P(t > n)
/ )

and

"/2 y {P(S:_, _> (n- 1)(1- z/x/), S**__. > b,_l, m _i_ -n----l+[(V/-l-z)

-P ( ,-1 > (n 1)(1 + z/v),S:_ > b,_,m < < n 1)
So

"[1-t-"[2 Z p (t. ( V/) )n-1 >(n--l) i-z/ S:_ >b,_l,m<i<n
{m,[(’v/-z)2 ]+

(" ( )P Sn_ > (n- 1) + z ,-1 > b,_x,m < < n
n=lT[(Tz)

[(+)l
P(t>n)

{m,[(-z)]+l}

T T- Ta (say). (3.8)
If a(-z) > 1/2, then from Lemma 3.3 we have that ni(-z) > l+a(-z) and n(-z) < +a(-z).

Hence we can write

=x{, a+b(-)])
[(-)]

Z + Z
n={IT[a(--z)], m}] n=[n(--z)]+X

[(-)1

Z P( n--1 > (n- 1) (l z/ S*,_1 > b,-l, m < < n- 1]
{a+b(-.)], }

+ P(>.-1). (.)
=1+[.1(-)1
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Note that if nl(-z)] < max{1 + a(-z),m} then the contribution from the first summation is
zero, and the lower limit in the second summation should be max{1 + a(-z),m}. This will be
further elaborated under "special case". Also, since + a(z) < nl(z), we can write

[, ()]

n=l+[(V+z)
[,(z)]

Thus

+ P(t > n- 1). (3.10)

[(-)]

(s: /,a)7 P -1 >(n-l) 1-z ,S,_x >b,_l,m<_i_<n-1
{m,l-t-[a(--z)]}

[(z)]

Z P (S:-I > (- 1)(1 + z/V-),S,*__, > b,_l,m _i

_
12 1)

,=a+[(,)]
[-()]-

+ Z
"=[" (-0] +b(-)]}

Special Case. If [na(-Z)] < max{m, + [a(-z)]}, then one can write

TI= P(t>n).
{m--l,[a(-z)]}

(3.11)

Hence

[rl.1 (Z)]

Y2 P (S,_, > (n- 1)(1 + zlvf-), Sl*._ ) bi_l,m

_
"- 1)

n--l-t-[a(z)]

[n. (z)]--I [a(z)]

Y2 P(t > n)- Y2 P(t > n).
{m-1 ,[a(-z)] {m,1+[a(-z)]

(3.12)

Again, the last two terms will simplify to

P(t > max{m- 1, [a(-z)]})+
[nl(z)]--I_, P(t > n). (3.1a)

Also, as noted in the proof of Lemma 3.2, since the b,’s and the S* are increasing in i, we have

(3.14)

after performing integration by parts repeatedly. If B-I < b._:, then
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Remark 3.3. For numerical computations, we definc

.21(b_, A(ib_, )e-b,

and
Dk(j- 1)= Ak(B,_,)e

where
+

Table 3.1: Exact Values of Et and the Confidence Coefficient for Various Values of A and m.

z A A/ a/d m=4 m=8 m=10
Et ECC* Et ECC Et ECC

1.96

3.84 1.96 1.0 5.21 1.000 9.23 1.000 10.09 1.000
8.64 2.94 1.5 7.97 0.999 14.30 1.000 11.47 0.999

15.37 3.92 2.0 12.64 0.778 23.75 0.933 15.44 0.997
24.01 4.90 2.5 19.58 0.741 37.65 0.897 22.16 0.897
34.57 5.88 3.0 29.00 0.766 55.77 0.922 31.58 0.847
47.06 6.86 3.5 40.92 0.802 77.66 0.946 43.57 0.860
6.63 2.58 6.73 1.000 8.27 1.000 10.69 1.000

14.92 3.86 1.5 12.31 0.920 10.23 0.999 15.13 1.000
16.52 5.15 2.0 21.74 0.810 14.62 0.997 24.31 1.000

2.575 41.44 6.44 2.5 35.48 0.836 21.56 0.843 38.10 0.911
59.68 7.72 3.0 53.44 0.880 31.09 0.830 56.13 0.929
81.22 9.01 3.5 75.27 0.914 43.15 0.850 77.96 0.950

"ECC Exact Confidence Coefficient

and compute .(b,i-,) and Dk(j-a) recursively after rewriting (3.2) and (3.15) in terms of
and D(j 1), and hence evaluate P(t > j) and the probabilities

P(S;_a > Bj-, i*_l > bi-x,m <_ <_ j- 1).

Remark 3.4. In the sequential rule, we can replace z by a sequence {z,} converging to z. For
instance z, could be the (1- a/2) quantiles of Student’s t-distribution with n degrees of frdom.
In the latter ce

z, z {1 + (1 + z)(4i)- + o(i-)}
Then bi-1 will be an increing sequence provided 2. This is satisfied because we c Mways
choose m 2 or 3 (see the definiti of bi_).

The first order ymptotic vMue of Et is A d the second order ymptotic vMue for Et (using
Theorem 2.1) is given by

Et A 1.50 1.438 + o(1) -2.988 + o(1).

From Table 3.1, we infer that the ymptotic values for Et e close to the true vMues when
a/d 1.5. The surprise is that the exact confidence coefficient decrees with aid for a while and
increes from there on, but still falling short of the nominal confidence coefficient. When aid 1,
the actual confidence coefficient exceeds the nominal confidence coefficient. It seems one should
take at lee 10 for m in order for the exact confidence coefficient to be reonably close to the
nominM value.

4 Point Estimation of a.

Let the loss incurred in estimating a by a, where a, is given by (1.2) be given by

L. (a. a) + ca.

Then (4.1)
L.. a2(n 1)-’ + cn ft,(c) (say).
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Setting O/,,(.r)/On O. w(, obtain

n r/c1/2 + 1. (.1.2)

Since a is unknown, wc resort to the [bllowing sequential r,le. The stopping time N +
where for > 2

where ) is the optimal fixed-sample size required when a is known and S_ is the sum of n-
standard exponential random variables. Thus

P(t > j) P(ST_ > z(z- 1)/7, m )) (4.4)
and from Remark 3.2 we have

zt + p( > j). (4.5)

Hence, one can readily evaluate Et for various values of 7 after evaluating P(t > j) using Lemma
3.2 with b,_ i(z 1)/3. These are tabulated in Table 4.1 for some value of m.

Table 4.1: Et for Some Selected Values of m.

7
-1 1.0 0.5 0.1 0.05 0.01

Et rn 4 4.00 4.07 9.35 19.02 99.66
rn 8 8.00 8.00 10.42 19.42 99.69
rn 10 10.00 10.00 11.26 19.55 99.69

Towards the second order asymptotic results, from Govindarajulu and Sarkar [2] we have

Et 3’ + 0.374 + o(1) 3’ 0.626 + o(1). (4.6)
From Table 4.1 we infer that the asymptotic values for Et are very close to the exact values for
3’_>10.
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