EXISTENCE OF PERIODIC SOLUTIONS FOR NONLINEAR LIENARD SYSTEMS

WAN SE KIM Department of Mathematics Dong-A University Pusan 604 - 714 Republic of Korea

(Received January 26, 1993 and in revised form March 29, 1993)

ABSTRACT. We prove the existence and multiplicity of periodic solutions for nonlinear Lienard System of the type

$$x^{\prime\prime}(t) + \frac{d}{dt} [\nabla F(x(t))] + g(x(t)) + h(t, x(t)) = e(t)$$

under various conditions upon the functions g, h and e.

KEY WORDS AND PHRASES: Nonlinear Lienard system, multiplicity of periodic solution. **1991 AMS SUBJECT CLASSIFICATION CODES:** 34B15, 34C25

1. INTRODUCTION

Let R^n be *n*-dimensional Euclidean space. We define $||x|| = [\sum_{i=1}^n |x_i|^2]^{1/2}$ for $x = (x_1, x_2, \dots, x_n) \in R^n$.

By $L^{2}([0, 2\pi], \mathbb{R}^{n})$ we denote the space of all measurable functions $x: [0, 2\pi] \to \mathbb{R}^{n}$ for which $||x(t)||^{2}$ is integrable. The norm is given by

$$\|x\|_{L^2} = \left[\sum_{i=1}^n \|x_i\|_{L^2}^2\right]^{1/2}$$

By $C^{k}([0.2\pi], \mathbb{R}^{n})$ we denote the Banach space of 2π -periodic continuous functions $x: [0, 2\pi] \to \mathbb{R}^{n}$ whose derivatives up to order k are continuous. The norm is given by

$$\|x\|_{C^k} = \sum_{i=0}^k \|x^{(i)}\|_{\infty}$$

where $||y||_{\infty} = \sup_{t \in [0, 2\pi]} ||y(t)||$ which is a norm in $C([0, 2\pi], \mathbb{R}^n)$. We use the symbol (\cdot, \cdot) for the Euclidean inner product in the space \mathbb{R}^n . For x, y in $C([0, 2\pi], \mathbb{R}^n)$ we define the L^2 -inner product as follows

$$\langle x, y \rangle = \int_0^{2\pi} (x(t), y(t)) dt \; .$$

The mean value \overline{x} of x and the function of mean value zero are defined by $\overline{x} = \frac{1}{2\pi} \int_0^{2\pi} x(t) dt$ and $\overline{x}(t) = x(t) - \overline{x}$, respectively.

We define inequalities in \mathbb{R}^n componentwise, i.e. $x, y \in \mathbb{R}^n$, $x \le y$ if and only if $x_i \le y_i$ for i = 1, 2, ..., n, and x < y if and only if $x_i < y_i$ for i = 1, 2, ..., n. In this work, we will study the existence of periodic solutions and multiple periodic solutions for the problem

(E)
$$x''(t) + \frac{d}{dt} [\nabla F(x(t))] + g(x) + h(t,x) = e(t)$$

(B)
$$x(0) - x(2\pi) = x'(0) - x'(2\pi) = 0$$

where $F: \mathbb{R}^n \to \mathbb{R}$ is a \mathbb{C}^2 -function, $g: \mathbb{R}^n \to \mathbb{R}^n$ is continuous, $h: [0, 2\pi] \times \mathbb{R}^n \to \mathbb{R}$ is continuous in both variables and 2π -periodic in t, and $e: [0, 2\pi] \to \mathbb{R}$ is in $L^2([0, 2\pi], \mathbb{R}^n)$. We assume that $g(x) = (g_1(x_1), g_2(x_2), \dots, g_n(x_n))$ for all $x = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$ and $h(t, x) = (h_1(t, x), h_2(t, x), \dots, h_n(t, x))$ for all $(t, x) \in [0, 2\pi] \times \mathbb{R}^n$.

Moreover, we assume the following:

(H_i) h is bounded; i.e., for each i = 1, 2, 3..., n, there exists $K_i > 0$ such that

$$|h_i(t,x)| \leq K$$

for all $(t,x) \in [0,2\pi] \times R^n$.

 (H_2) for each i = 1, 2, ..., n,

$$\frac{d}{dt} \frac{\partial F(x)}{\partial x_i} = \frac{\partial^2 F(x)}{\partial x_i^2} x_i'$$

and there exists $C_i > 0$ such that

$$\left|\frac{\partial^2 F(x)}{\partial x_i^2}\right| \ge C_i$$

for all $x = (x_1, x_2, ..., x_n) \in \mathbb{R}^n$.

The purpose of this work is to give existence and multiplicity results for periodic solutions of coupled Lienard system in R^n . This paper was motivated by the results in [1] and so our results in this work extend some results in [1]. To prove our results we adapt Mawhin's continuation theorem in [2], and we give appropriate region for the system's multiplicity by finding an a'priori bound.

2. A'priori Bound

To prove our assertion, we consider the following homotopy:

$$(E_{\lambda}) \qquad \qquad x''(t) + \lambda \frac{d}{dt} [\nabla F(x(t))] + \lambda g(x) + \lambda h(t,x) - \lambda e(t) + \lambda g(x) + \lambda h(t,x) - \lambda h(t,x) + \lambda$$

Let $\lambda \in (0, 1)$ and let x(t) be a possible solution of the problem $(E_{\lambda})(B)$. Taking L^2 -inner product by x'(t) on both sides of (E_{λ}) , we have

$$\lambda \sum_{i=1}^{n} \int_{0}^{2\pi} \frac{\partial^{2} F(x(t))}{\partial x_{i}^{2}} [x_{i}'(t)]^{2} dt + \lambda \sum_{i=1}^{n} \int_{0}^{2\pi} g_{i}(x_{i}(t)) x_{i}'(t) dt + \lambda \sum_{i=1}^{n} \int_{0}^{2\pi} h_{i}(t, x(t)) x_{i}'(t) dt - \lambda \sum_{i=1}^{n} \int_{0}^{2\pi} e_{i}(t) x_{i}'(t) dt$$

By the continuity of $\frac{\partial^2 F(x)}{\partial x_i^2}$, (H_2) and the periodicity of $x_i(t)$ in t, we have

$$\sum_{i=1}^{n} C_{i} \int_{0}^{2\pi} [x_{i}'(t)]^{2} dt \leq \left| \sum_{i=1}^{n} \int_{0}^{2\pi} \frac{\partial^{2} F(x)}{\partial x_{i}^{2}} [x_{i}'(t)]^{2} dt \right|$$

$$\leq \sum_{i=1}^{n} \sqrt{2\pi} \left[\sum_{i=1}^{n} K_{i}^{2} \right]^{1/2} \left[\int_{0}^{2\pi} |x_{i}'(t)|^{2} dt \right]^{1/2} + \left[\sum_{i=1}^{n} \int_{0}^{2\pi} |\tilde{e}_{i}(t)|^{2} dt \right]^{1/2} \left[\sum_{i=1}^{n} \int_{0}^{2\pi} [x_{i}'(t)]^{2} \right]^{1/2}.$$

$$= \sum_{i=1}^{n} \sqrt{2\pi} \left[\sum_{i=1}^{n} K_{i}^{2} \right]^{1/2} \left[\int_{0}^{2\pi} |x_{i}'(t)|^{2} dt \right]^{1/2} + \left[\sum_{i=1}^{n} \int_{0}^{2\pi} |\tilde{e}_{i}(t)|^{2} dt \right]^{1/2} = M_{i}.$$

Hence

$$\|x'\|_{L^{2}} \leq \left(\frac{1}{\min_{1 \leq i \leq n} C_{i}}\right) \left[\sqrt{2\pi} \left[\sum_{i=1}^{n} K_{i}^{2}\right]^{1/2} + \|\bar{e}\|_{L^{2}}\right] = M_{0}$$

By the Sobolev inequality, we have

$$\|\tilde{x}\|_{\infty} \leq \sqrt{\frac{\pi}{6}} M_0 = M_1$$

Suppose there exist $a = (a_1, a_2, ..., a_n), b = (b_1, b_2, ..., b_n)$ in \mathbb{R}^2 such that $a \le b$; if x(t) is a solution of $(E_\lambda)(B)$ such that $a \le \overline{x} \le b$ and $\|\tilde{x}\|_{\infty} \le M_1$, then

$$||x||_{\infty} \le \left[\sum_{i=1}^{n} [\max(|a_i|, |b_i|)]^2\right]^{1/2} + M_1.$$

Taking L^2 -inner product by x''(t) on both sides of (E_{λ}) , we have

$$\sum_{i=1}^{n} \int_{0}^{2\pi} [x_{i}''(t)]^{2} dt + \lambda \sum_{i=1}^{n} \int_{0}^{2\pi} \frac{\partial^{2} F(x)}{\partial x_{i}^{2}} x_{i}'(t) x_{i}''(t) dt$$
$$+ \lambda \sum_{i=1}^{n} \int_{0}^{2\pi} g_{i}(x_{i}(t)) x_{i}''(t) dt + \lambda \sum_{i=1}^{n} \int_{0}^{2\pi} h_{i}(t, x(t)) x_{i}''(t) dt$$
$$= \lambda \sum_{i=1}^{n} \int_{0}^{2\pi} \tilde{e}_{i}(t) x_{i}''(t) dt .$$

Since F is a C^2 -function, for each i = 1, 2, ..., n, there exists i > 0 such that

$$\left|\frac{\partial^2 F(x)}{\partial x_i^2}\right| \le D_i\,,$$

and also since g is continuous, for each i = 1, 2, ..., n, there exists $L_i > 0$ such that

$$\left|g_i(x_i)\right| \leq L_i$$

Hence

$$\begin{split} \sum_{i=1}^{n} \int_{0}^{2\pi} [x_{i}''(t)]^{2} dt &\leq \left(\max_{1 \leq i \leq n} D_{i}\right) \left[\sum_{i=1}^{n} \int_{0}^{2\pi} |x_{i}'(t)|^{2} dt\right]^{1/2} \left[\sum_{i=1}^{n} \int_{0}^{2\pi} |x_{i}''(t)|^{2} dt\right]^{1/2} \\ &+ \sqrt{2\pi} \left[\sum_{i=1}^{n} L_{i}^{2}\right]^{1/2} + \left[\sum_{i=1}^{n} K_{i}^{2}\right]^{1/2} \left[\sum_{i=1}^{n} \int_{0}^{2\pi} |x_{i}''(t)|^{2} dt\right]^{1/2} \\ &+ \left[\sum_{i=1}^{n} \int_{0}^{2\pi} |\tilde{e}_{i}(t)|^{2} dt\right]^{1/2} \left[\sum_{i=1}^{n} \int_{0}^{2\pi} x_{i}''(t)\right]^{2} dt \right]^{1/2} \end{split}$$

and thus we have

$$\|x''\|_{L^{2}} \leq \left(\max_{1 \leq i \leq n} D_{i}\right) M_{0} + \sqrt{2\pi} \left[\sum_{i=1}^{n} L_{i}^{2}\right]^{1/2} + \left[\sum_{i=1}^{n} K_{i}^{2}\right]^{1/2} + \|\bar{e}\|_{L^{2}} \equiv M_{2}.$$

By the Sobolev inequality

$$\|x'\|_{\infty} \leq \sqrt{\frac{\pi}{6}} M_2$$

for every solution of the problem $(E_{\lambda})(B)$ where M_2 depends on a, b, M_0 and M_1 .

3. OPERATOR FORMULATION

Define

$$L:D(L)\subseteq C^{1}([0,2\pi],R^{n})\rightarrow L^{2}([0,2\pi],R^{n})$$

by

$$(x_1(t), x_2(t), \dots, x_n(t)) \rightarrow (x_1''(t), x_2''(t), \dots, x_n''(t))$$

where $D(L) = C^{2}([0, 2\pi], R^{n})$. Then $KerL = R^{2}$ and

$$ImL = \left\{ e \in L^{2}([0, 2\pi], \mathbb{R}^{n}) \mid \int_{0}^{2\pi} e(t)dt = 0 \right\}.$$

Consider two continuous projections

$$P: C^{1}([0, 2\pi], R^{n}) \to C^{1}([0, 2\pi], R^{n})$$

such that

ImP = KerL

and

$$Q: L^{2}([0, 2\pi], R^{n}) \rightarrow L^{2}([0, 2\pi], R^{n})$$

defined by

$$(Qe)(t) = \frac{1}{2\pi} \int_0^{2\pi} e(t)dt$$

Then

$$KerQ = ImL, C([0, 2\pi], R^*) = KerL \oplus KerP$$

and $L^{2}([0, 2\pi], \mathbb{R}^{n}) = ImL \oplus ImQ$ as a topological sum. Since

$$dim[L^2([0,2\pi],R^n)/ImL] = dim[ImQ] = dim[KerL] = n$$

L is a Fredholm mapping of index zero and hence there exists an isomorphism $J:ImQ \rightarrow KerL$. The operator L is not bijective but the restriction of L on $DomL \cap KerP$ is one-to-one and onto ImL, so it has its algebraic right inverse K_R and, as well known, it is compact. Define

$$N: C^{1}([0, 2\pi], R^{n}) \rightarrow L^{2}([0, 2\pi], R^{n})$$

by

$$x(t) \rightarrow -\frac{d}{dt} [\nabla F(x(t))] - g(x(t)) - h(t, x(t)) + e(t)$$

where $x(t) = (x_1(t), x_2(t), ..., x_n(t))$. Then N is continuous and maps bounded sets into bounded sets. Let G be any open bounded subset of $C^1([0, 2\pi], R^n)$, then $QN: G \to L^2([0, 2\pi], R^n)$ is bounded and $K_R(I-Q): \overline{G} \to L^2([0, 2\pi], R^n)$ is compact and continuous. Hence N is L-compact on G. Now we see $x \in D(L)$ is a solution to the problem $(E_\lambda)(B)$ if and only if

$$Lx = \lambda Nx \; .$$

4. MAIN RESULTS

THEOREM 4.1. Besides conditions on F, g, e, and $(H_1), (H_2)$, we assume

 (H_3) there exists $r = (r_1, r_2, ..., r_n)$, $s = (s_1, s_2, ..., s_n)$, $A = (A_1, A_n, ..., A_n)$ and $B = (B_1, B_2, ..., B_n)$ in R^n such that r < s and $A \le B$

$$\frac{1}{2\pi}\int_0^{2\pi}g(r+\bar{x}(t))dt+\frac{1}{2\pi}\int_0^{2\pi}h(t,\overline{x}+\bar{x}(t))dt\leq A$$

and

$$\frac{1}{2\pi}\int_0^{2\pi}g(s+\bar{x}(t))dt+\frac{1}{2\pi}\int_0^{2\pi}h(t,\bar{x}+\bar{x}(t))dt\geq B$$

for every $\overline{x} \in R^*$ such that

$$\|\overline{x}\| \leq \left[\sum_{i=1}^{n} [\max(|r_i|, |s_i|)^2]^{1/2},\right]$$

and for every $\bar{x} \in C^{1}([0, 2\pi], \mathbb{R}^{n})$ having mean value zero, satisfying the boundary condition (B) and such that

$$\|\tilde{x}\|_{\infty} \leq \sqrt{\frac{\pi}{6}} \left(\frac{1}{\min_{1 \leq i \leq n} C_i} \right) \left[\sqrt{2\pi} \left[\sum_{i=1}^n K_i^2 \right]^{1/2} + \|\tilde{e}\|_{L^2} \right].$$

Then (E)(B) has at least one solution if

$$A < \frac{1}{2\pi} \int_0^{2\pi} e(t)dt < B$$

PROOF. We construct a bounded open set Ω in $C^1(([0, 2\pi]), R^n)$ to apply Mawhin's continuation theorem in [2]. Using a priori estimate, we have

$$\|x'\|_{L^{2}} \le \left(\frac{1}{\min_{1 \le i \le n} C_{i}}\right) \left[\sqrt{2\pi} \left[\sum_{i=1}^{n} K_{i}^{2}\right]^{1/2} + \|\bar{e}\|_{L^{2}}\right] = M_{0}$$

for any solution x(t) of $(E_{\lambda})(B)$, $\lambda \in (0, 1)$. Hence $\|\tilde{x}\|_{\infty} \leq \sqrt{\frac{\pi}{6}}M_0 = M_1$. Define a bounded set Ω^0 by

$$\Omega^{0} = \{ x \in C^{1}([0, 2\pi], R^{*}) | r \le \overline{x} \le s, \| \tilde{x} \|_{\infty} \le M_{1} \}.$$

Then, for any solution x(t) of $(E_{\lambda})(B)$ lying in Ω^0 , we have

$$\|x\|_{\infty} \le \left[\sum_{i=1}^{n} [\max(|r_i|, |s_i|)]^2\right]^{1/2} + M_1$$

and

$$\|x''\|_{L^{2}} \leq \left(\max_{1 \le i \le n} D_{i}\right) M_{0} + \sqrt{2\pi} \left[\sum_{i=1}^{n} L_{i}^{2}\right]^{1/2} + \left[\sum_{i=1}^{n} K_{i}^{2}\right]^{1/2} + \|\tilde{e}\|_{L^{2}} = M_{2}$$

where L_i depends on r, s and M_1 . Thus $||x'||_{\infty} \leq \sqrt{\frac{\pi}{6}}M_2$. Define a bounded open set Ω by

$$\Omega = \left\{ x \in C^{1}([0, 2\pi], R^{n}) \mid r < \overline{x} < s, \| \bar{x} \|_{\infty} < 2M_{1}, \| x^{\prime} \|_{\infty} < \sqrt{\frac{2\pi}{6}} M_{2} \right\}$$

Let $(x, \lambda) \in [D(L) \cap \partial \Omega] \times (0, 1)$ and if (x, λ) is any solution to $Lx = \lambda Nx$, then (x, λ) is a solution to the problem $(E_{\lambda})(B)$,

$$\|\tilde{x}\| \le \left[\sum_{i=1}^{n} [\max(|r_i|, |s_i|)]^2\right]^{1/2}, \|\tilde{x}\| \le M_1$$

and there exists some $i \in \{1, 2, ..., n\}$ such that $\bar{x}_i = r_i$ or s_i . Take L^2 -inner product with $e_i = (0, 0, ..., 0, 1, 0, ..., 0)$ on both sides of (E_{λ}) , we have

$$\lambda \int_0^{2\pi} g_i(x_i(t))dt + \lambda \int_0^{2\pi} h_i(t,x(t))dt - \lambda \int_0^{2\pi} e_i(t)dt ,$$

or

$$\int_{0}^{2\pi} g_{i}(x_{i}(t))dt + \int_{0}^{2\pi} h_{i}(t,x(t))dt - \int_{0}^{2\pi} e_{i}(t)dt = 0$$

if $\overline{x}_i = r_i$, then, by assumption

$$\int_{0}^{2\pi} g_{i}(r_{i}+\bar{x}_{i}(t))dt + \int_{0}^{2\pi} h_{i}(t,\bar{x}_{1}+\bar{x}_{1}(t),...,r_{i}+\bar{x}_{i}(t),...,\bar{x}_{n}+\bar{x}_{n}(t))dt - \int_{0}^{2\pi} e_{i}(t)dt < 0.$$

If $\overline{x}_i = s_i$, then again by assumption,

W. E. KIM

$$\int_{0}^{2\pi} g_{i}(s_{i}+\bar{x}_{i}(t))dt + \int_{0}^{2\pi} h_{i}(t,\bar{x}_{1}+\bar{x}_{1}(t),...,s_{i}+\bar{x}_{i}(t),...,\bar{x}_{n}+\bar{x}_{n}(t))dt - \int_{0}^{2\pi} e_{i}(t)dt < 0$$

Thus, for each $\lambda \in (0, 1)$, for every solution of

$$Lx = \lambda Nx$$

is such that $x \notin \partial \Omega$.

Next, we will show that $QNx \neq 0$ for each $x \in KerL \cap \partial\Omega$ and $d_B[JQN, \Omega \cap KerL, 0] \neq 0$ where d_B is the Brouwer topological degree. Since $J:ImQ \rightarrow KerL$ is an isomorphism and dim[ImQ] = dim[KerL] = n, we may take J to be the identity on R^n and hence

$$(JQN)(x)(t) = -\frac{1}{2\pi} \int_{0}^{2\pi} g(x(t))dt - \frac{1}{2\pi} \int_{0}^{2\pi} h(t, x(t))dt + \frac{1}{2\pi} \int_{0}^{2\pi} e(t)dt$$

with, for i = 1, 2, ..., n,

$$(JQN)_{i}(x)(t) = -\frac{1}{2\pi} \int_{0}^{2\pi} g_{i}(x_{i}(t))dt - \frac{1}{2\pi} \int_{0}^{2\pi} h_{i}(t,x(t))dt + \frac{1}{2\pi} \int_{0}^{2\pi} e_{i}(t)dt$$

where $x(t) = (x_1(t), x_2(t), \dots, x_n(t)).$

Let $x \in KerL \cap \partial \Omega$, then $x = \overline{x}$ is constant in \mathbb{R}^n ,

$$\|\overline{x}\| \le \left[\sum_{i=1}^{n} [\max(|r_i|, |s_i|)]^2\right]^{1/2},$$

and there exists $i \in \{1, 2, ..., n\}$ such that $x_i = \overline{x_i} = r_i$ or s_i . In a similar manner we have $(QN)_i(x) \neq 0$.

Thus $QNx \neq 0$ for each $x \in KerL \cap \partial \Omega$. It is easy to see that $P = \overline{\Omega \cap KerL} = \prod_{i=1}^{n} [r_i, s_i]$. Let $P_i = \{x \in P \mid x_i = r_i\}, P_i' = \{x \in P \mid x_i = s_i\}$ and $x \in P_i, x' \in P_i', i = 1, 2, ..., n$.

Then $x = \overline{x}, x' = \overline{x'}$ are constant with

$$\|\overline{x}\|$$
, and $\|\overline{x}'\| \le \left[\sum_{i=1}^{n} [\max(|r_i|, |s_i|)]^2\right]^{1/2}$,

and $x_i = \overline{x}_i = r_i, x_i' = \overline{x}_i' = s_i$. Hence

$$(JQN)_{i}(x) = -\frac{1}{2\pi} \int_{0}^{2\pi} g_{i}(r_{i})dt - \frac{1}{2\pi} \int_{0}^{2\pi} h_{i}(t, x_{i}, \dots, r_{i}, \dots, x_{n})dt + \frac{1}{2\pi} \int_{0}^{2\pi} e_{i}(t)dt > 0$$

and

$$(JQN)_i(x') = -\frac{1}{2\pi} \int_0^{2\pi} g_i(s_i) dt - \frac{1}{2\pi} \int_0^{2\pi} h_i(t, x_i', \dots, s_i, \dots, x_n') dt + \frac{1}{2\pi} \int_0^{2\pi} e_i(t) dt < 0.$$

Thus $(JQN)_i(x)(JQN)_i(x') < 0$ for i = 1, 2, ..., n. Therefore, by the generalized intermediate value theorem, $d_B[JQN, \Omega \cap KerL, 0] \neq 0$. Hence, by Mawhin's continuation theorem, the problem (E)(B) has at least one solution in $D(L) \cap \overline{\Omega}$.

THEOREM 4.2. Besides conditions on F, g, e, and (H_1) and (H_2) , we assume

 (H_4) there exists $q = (q_1, q_2, ..., q_n)$, $r = (r_1, r_2, ..., r_n)$, $s = (s_1, s_2, ..., s_n)$, $A = (A_1, A_2, ..., A_n)$ and $B = (B_1, B_2, ..., B_n)$ in \mathbb{R}^n such that q < r < s and $A \leq B$ such that

$$\frac{1}{2\pi} \int_{0}^{2\pi} g(q + \bar{x}(t))dt + \frac{1}{2\pi} \int_{0}^{2\pi} h(t, \overline{x} + \bar{x}(t))dt \ge B ,$$

$$\frac{1}{2\pi} \int_{0}^{2\pi} g(r + \bar{x}(t))dt + \frac{1}{2\pi} \int_{0}^{2\pi} h(t, \overline{x} + \bar{x}(t))dt \le A ,$$

and

$$\frac{1}{2\pi} \int_0^{2\pi} g(s+\bar{x}(t)) dt + \frac{1}{2\pi} \int_0^{2\pi} h(t,\bar{x}+\bar{x}(t)) dt \ge B$$

for every $\overline{x} \in R^n$ such that

$$\|\overline{x}\| \le \left[\sum_{i=1}^{n} \max(|q_i|, |r_i|, |s_i|)^2\right]^{1/2}$$

and for every $\tilde{x} \in C^{1}([0, 2\pi], R^{n})$ having mean value zero, satisfying the boundary condition (B) such that

$$\|\vec{x}\|_{\infty} \leq \sqrt{\frac{\pi}{6}} \left(\frac{1}{\min_{1 \leq i \leq n} C_i} \right) \left[\sqrt{2\pi} \left[\sum_{i=1}^n K_i^2 \right]^{1/2} + \|\vec{e}\|_{L^2} \right]$$

Then (E)(B) has at least 2^n solutions if

$$A < 1/2 \pi \int_{0}^{2\pi} e(t) dt < B$$
.

PROOF. We construct 2ⁿ bounded open sets in $C^{1}([0, 2\pi], R^{n})$ to apply Mawhin's continuation theorem in [3]. Using a priori estimate, we have

$$\|x'\|_{L^{2}} \leq \left(\frac{1}{\min_{i \leq i \leq n} C_{i}}\right) \left[\sqrt{2\pi} \left[\sum_{i=1}^{n} K_{i}^{2}\right]^{1/2} + \|\tilde{e}\|_{L}^{2}\right] = M_{0}$$

for any solution x(t) of $(E_{\lambda})(B), \lambda \in (0, 1)$. Hence $\|\bar{x}\|_{\infty} \le \sqrt{\frac{\pi}{6}} M_0 = M_1$. Let *I*, *J* be two disjoint subsets of $\{1, 2, ..., n\}$ such that $I \cup J = \{1, 2, ..., n\}$ and define Ω_{IJ}^0 by $\Omega_{IJ}^0 = \{x \in C^1([0, 2\pi], R^n) \mid q_i \le \overline{x_i} \le r_i$ for $i \in I, r_j \le \overline{x_j} \le s_j$ for $j \in J, \|\bar{x}\|_{\infty} \le M_1\}$; then the number of such sets is 2^n and for any solution, x(t)of $(E_{\lambda})(B)$ lying in Ω_{IJ}^0 , we have

$$\|x\|_{\infty} \le \left[\sum_{i \in I} [\max(|q_i|, |r_i|)]^2 + \sum_{i \in I} [\max(|r_i|, |s_i|)]^2\right]^{1/2} + M_1$$

and

$$\|x''\|_{L^{2}} \le \left(\max_{1 \le i \le n} D_{i}\right) M_{0} + \sqrt{2\pi} \left[\sum_{i=1}^{n} L_{i}^{2}\right]^{1/2} + \left[\sum_{i=1}^{n} K_{i}^{2}\right]^{1/2} + \|\tilde{e}\|_{L^{2}} = M_{2}$$

where L_i depends on q, r, s and M_1 . Thus $||x'||_{\infty} \leq \sqrt{\frac{\pi}{6}}M_2$. Define a bounded open set Ω_{II} by

$$\Omega_{IJ} = \{x \in C^1([0, 2\pi], \mathbb{R}^n) \mid q_i < \overline{x}_i < r_i \quad \text{for} \quad i \in I, r_j < \overline{x}_j < s_j\}$$

for
$$j \in J$$
, $\|\tilde{x}\|_{\infty} < 2M_1$, $\|x''\|_{\infty} < \sqrt{\frac{2\pi}{3}}M_2$.

Let $(x,\lambda) \in [D(L) \cap \partial \Omega_{IJ}] \times (0,1)$ and if (x,λ) is any solution to

$$Lx = \lambda Nx$$
,

then (x, λ) is a solution to the problem $(E_{\lambda})(B)$,

$$\|\bar{x}\| \leq \left[\sum_{i \in I} [\max(|q_i|, |r_i|)]^2 + \sum_{j \in J} [\max(|r_j|, |s_j|)]^2\right]^{1/2}, \|\bar{x}\| \leq M_1$$

and there exists some $i \in \{1, 2, ..., n\}$, such that $\overline{x}_i = q_i, r_i$ or s_i . By (H_4) and assumption we can see for each $\lambda \in (0, 1)$, for every solution of $Lx = \lambda Nx$ is such that $x \notin \partial \Omega_{IJ}$. And similarly, we can also see $QNx \neq 0$ for each $x \in KerL \cap \partial \Omega_{IJ}$. It is easy to see $P = \Omega_{IJ} \cap KerL = \prod_i \in_I [q_i, r_i] \times \prod_j \in_J [r_j, s_j]$. Let

$$\begin{split} P_i &= \{x \in p \mid x_i = q_i\} \quad \text{if} \quad i \in I, \\ P_j &= \{x \in p \mid x_j = r_j\} \quad \text{if} \quad j \in J, \\ P_i' &= \{x \in p \mid x_i = r_i\} \quad \text{if} \quad i \in I, \\ P_i' &= \{x \in p \mid x_i = s_j\} \quad \text{if} \quad j \in I, \end{split}$$

and let $x \in P_i$, $x' \in P_i'$ with $i \in I \cup J$. Then, for $i \in I$, we have $x_i = q_i$, $x_i = r_i$. Hence $(JQN)_i(x)(JQN)_i(x') < 0$ for $i \in I$. For $j \in J$, we have $x_j = r_j$, $x_i' = s_j$. Thus $(JQN)_j(x)(JQN)_j(x') < 0$ for $j \in J$. Therefore, we have $d_B[JQN, \Omega_{II} \cap KerL, 0] \neq 0$. Thus, by Mawhin's continuation theorem, the problem $(E_\lambda)(B)$ has at least one solution in $D(L) \cap \overline{\Omega}_{II}$. Thus $(E_\lambda)(B)$ has at least 2ⁿ solutions.

Corollary 4.3. Besides the conditions on F, g and e, and (H_1) and (H_2) , we assume

 (H_5) there exists $T = (T_1, T_2, \dots, T_n) > 0$ in \mathbb{R}^n such that

$$g(T+x) = g(x)$$
 and $h(t, T+x) = h(t, x)$

for all $(t,x) \in [0,2\pi] \times \mathbb{R}^n$.

 (H_6) there exists $r = (r_1, r_2, ..., r_n)$, $s = (s_1, s_2, ..., s_n)$, $A = (A_1, A_2, ..., A_n)$ and $B = (B_1, B_2, ..., B_n)$ in R^n such that 0 < s - r < T, r < s, $A \le B$

$$\begin{split} &\frac{1}{2\pi} \int_{0}^{2\pi} g(r+\bar{x}(t)) dt + \frac{1}{2\pi} \int_{0}^{2\pi} h(t, \overline{x}+\bar{x}(t)) dt \leq A \ , \\ &\frac{1}{2\pi} \int_{0}^{2\pi} g(s+\bar{x}(t)) dt + \frac{1}{2\pi} \int_{0}^{2\pi} h(t, \overline{x}+\bar{x}(t)) dt \geq B \end{split}$$

for every $\overline{x} \in \mathbb{R}^n$ such that

$$\|\overline{x}\| \left[\sum_{i=1}^{n} [\max(|s_{i} - T_{i}|, |r_{i}|, |s_{i}|)]^{2} \right]^{1/2}$$

and for every $\vec{x} \in C^1([0.2\pi], \mathbb{R}^n)$ having mean value zero, satisfying the boundary condition (B) and such that

$$\|\tilde{x}\|_{\infty} \leq \sqrt{\frac{\pi}{6}} \left(\frac{1}{\min_{1 \leq i \leq n} C_i}\right) \left[\sqrt{2\pi} \left[\sum_{i=1}^n K_i^2\right]^{1/2} + \|\tilde{e}\|_{L^2}\right].$$

Then (E)(B) has at least 2^n solutions if

$$A < \frac{1}{2\pi} \int_0^{2\pi} e(t)dt < B .$$

ACKNOWLEDGMENT. This work was supported by the 1991 KOSEF grant and non-directed research fund, Korch Research Foundation, 1992.

REFERENCES

- MAWHIN, J. and WILLEM, M. Multiple solutions of the periodic boundary value problem for some forced pendulum-type equations, <u>J. Diff. Eq.</u>, 52, 2 (1984), 264-287.
- [2] GAINES, R. E. and MAWHIN, J. <u>Coincidence degree and nonlinear differential equations</u>. Springer-Verlag, New York, 1977.
- [3] DRABEK, P. Remarks on multiple periodic solutions of nonlinear ordinary differential equations, <u>Comment. Math. Univ. Carolinae</u> 211 (1980), 155-160.
- [4] DRABEK, P. Periodic solutions for systems of forced coupled pendulum-like equations, J. Diff. Eq., 70, 3 (1987), 390-401.
- [5] ZANOLIN, B. Remarks on multiple periodic solutions for nonlinear ordinary differential systems of Lienard type, <u>Boll. U.M.I. (6) I-B</u> (1982), 683-698.