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ABSTRACT. We prove the existence and multiplicity of periodic solutions for nonlinear Lienard

System of the type

d
x"(t) + -[VF(x(t))] / g(x(t)) + h(t,x(t)) e(t)

under various conditions upon the functions g, h and e.
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1. INTRODUCTION

LetR" be n-dimensional Euclidean space. We define xll [. 1 x,I]forx (xl, x2,...,x,) ER.
By L2([0, 2 :t],R")we denote the space of all measurable functions x: [0, 2hi R" for which

integrable. The norm is given by
1/2

By C*([0.2n],R") we denote the Banach space of 2g-periodic continuous functions x" [0,2g]

whose derivatives up to order k are continuous. The norm is given by

where Ilyll(R) sup,..lly(t)ll which is a norm in C([0,2],R"). We use the symbol (o,o) for the

Euclidean inner product in the space R". For x, y in C([0,2],R) we define the L2-inner product as

follows
2

(x,y)- fo (x(t),y(t))dt.

fx(t)dt andThe mean value x of x and the function of mean value zero are defined by-f(t) x(t) , respectively.

We define inequalities in R" componentwise, i.e. x,y _R, x y if and only if xi s yl for

1,2,...,n, andx < y if and only ifxi < yi for 1,2 ,n. In this work, we will study the existence

of periodic solutions and multiple periodic solutions for the problem

x"(t) + -[VF(x(t))] + g(x) + h(t,x) e(t)

(B) x(0) x(2 n) x’(0) x’(2 n).= 0
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where F :R" R is a C2-function, g :R" R" is continuous, h [0,2] xR" R is continuous in

both variables and 2n-periodic in t, and e :[0,2n]---,R is in L ’([0, 2 n],R" ). We assume that

g(x) (gl(xl),g2(x2), ...,gn(x)) for all x (x,x2,...,x)R and h(t,x) (h(t,x),h2(t,x),...,hn(t,x))
for all (t,x)[O,2n]xR.

Moreover, we assume the following:

(HI) h is bounded; i.e., for each 1,2,3 n, there exists Ki > 0 such that

h,(t,x)] g

for all (t,x)[O,2n]Rn.
(Hz) for each 1, 2 n,

and there exists Ci > 0 such that

a OF(x).o(X)x.
at Ox, ox?

OF(x)

for all x (xl,x2 xn)

The purpose of this work is to give existence and multiplicity results for periodic solutions of

coupled Lienard system in R". This paper was motivated by the results in [1 and so our results in this

work extend some results in [1]. To prove our results we adapt Mawhin’s continuation theorem in [2],
and we give appropriate region for the system’s multiplicity by finding an a’priori bound.

A’priori Bound

To prove our assertion, we consider the following homotopy:

x"(t) +
dt

[VF(x(t))] + .g(x) + Xh(t,x) Xe(t)

Let X (0,1) and let x(t) be a possible solution of the problem (E)(B). Taking L2-inner product by

x’(t) on both sides of (E), we have
2t 2x

x,’.., foOF.(-x(t"[x,’(t,dt+Xoxi fo g’(x’(t),x’’(t)dt

2t

+ X,.. hi(t,x(t))xi’(t)dt
".

ei(t)xi’(t)dt.

dF0’)
(H2) and the periodicity of x(t) in t, we haveBy the continuity of --?,

2f 2"a F(x), c, tx,’(t)at , dt
i-1 i-1

Hence

1/2 1/’2

1/2

By the Sobolev inequality, we have

6M0
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Suppose there exist a --(al, a2 a,),b (bl, b2 b,,) in R such that a < b; if x(t) is a solution of

(E) (B) such that a b and .g[[ M1, then
1/2

]lx]l(R)[,.l[max(lai],]b,])]2 +Mx.

Taking L Z-inner product by x"(t) on both sides of (E0, we have

2n 2n

fo Io O2F(x)
’([x’"(t)]2dt + ’,’l Ox,

x, ,t)xi"(t)dt

2 2

+’i. fo g,(x,(t))x,"(t)dt+?i.1 fo h,(t,x(t))x,"(t)dt

2

?,Y:I ei(t)xi"(t)dt

Since F is a C-function, for each 1,2 n, there exists > 0 such that

o2F(x)
x O,

and also since g is continuous, for each 1,2 n, there exists Li > 0 such that

g,(x,)l L,.
Hence

and thus we have

fo[Xi"(t)]2dt(maxD,) ix,’(t)iat
i-1 \1 li.n i-l

1/2

+ +

fo x’’(t)l 2dt
i..1

f01 x,’’(t)li,,,1

2n 1/2 2n 1/2

( ),,o
’:

gz max O + +
liin

By the Sobolev inequality

for every solution of the problem (E0 (B) where M2 depends on a, b, M0 and

3. OPERATOR FORMULATION
Define

L’D(L)C_ C([0, 2 x],g") L :([0, 2 x],R ")

by

(xx(t),xz(t), .,x,(t))-- t),x2 t), .,x,, ’(t))

where D(L) C2([0, 2t],R"). Then KerL R and

1/2
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f
ImL te EL2([O,

k

Consider two continuous projections

such that

and

defined by

Then

2n]’R’)I fo e(t)dt 0

P: C*([0, 2n],R") C’([0, 2n],R’)

ImP KerL

Q" L2([0, 2 n],R’) L2([0, 2 n],R’)

(Qe)(t)-- -n e(t)dt

KerQ lmL, C([0, 2 n],R’) KerL OKerP

and L :’([0, 2:x],Rn) ImL O)ImQ as a topological sum. Since

dim[L 2([0, 2 n],R")/ImL dimJimQ dim[KerL n,

L is a Fredholm mapping of index zero and hence there exists an isomorphism J" lmQ KerL. The

operator L is not bijective but the restriction ofL on DomL NKerP is one-to-one and onto lmL, so it

has its algebraic right inverse Ks and, as well known, it is compact. Define

N: C1([0, 2 n],R") L2([0, 2 n],Rn)
by

x(t) -t [VF(x(t))] g(x(t)) h(t,x(t)) + e(t)

where x(t) (x(t),x(t) x,(t)). ThenN is continuous and maps bounded sets into bounded sets. Let

G be any open bounded subset of CI([0,2n],R"), then QN:G----L2([0,2n],Rn) is bounded and

KR(I Q): " L:’([0, 2n],R") is compact and continuous. HenceN is L-compact on G. Now we see

x D(L) is a solution to the problem (Ex)(B) if and only if

Lx .Nx
MAIN RESULTS

THEOREM 4.1. Besides conditions on F,g, e, and (H1), (H2), we assume

(Ha) there exists r (r,r2, ...,r,),s (s,s, sn),A (A,A An) andB (B1,B, ...,Bn) inR"

such that r < s andA B

and

for every "R" such that

2 2

2-" g(r /.(t))dt + h(t, /.(t))dt A

1
g(s +X(t))dt +- h(t,+X(t))dtaB

2n
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and for every .f (E CI([0,2t],R ") having mean value zero, satisfying the boundary condition (B) and

such that

Then (E)(B) has at least one solution if

2

PROOF. We construct a bounded open set in C(([0,2]),R") to apply Mawhin’s continuation

theorem in [2]. Using a’priori estimate, we have

for any solution x(t) of (EO(B 1, (0,11. Hence I111- M0-M. Define a bounded set n by

f2 {x C([0, 2 hi,R")I r < < s, :e < Mt}.

Then, for any solution x(t) of (E) (B) lying in fo, we have

1/2

[" [max(I111. . ir,l,ls,i)] +M,

and

where L, depends on r, s and M. Thus x’ll V/’-M:’’ Define a bounded open set by

-{xeC’([O,2],R")lr < < ,llll < 2M,,IIx’II <VM=}
Let (x, :k) [D(L)NO] (0,1) and if (x,k) is any solution to Lx Nx, then (x,k) is a solution to the

problem (EO(B ),

l[2[l [il[max(lri[’[si[ ) I[2[I "M

and there exists some {1,2 n} such that $-r or s. Take L-inner product with

ei (0, 0 0,1, 0,..., 0) on both sides of (EO, we have
2 2x 2x

fog,(x,(t))dt+foh,(t,x(t)t-foe,(tt,
or

2x 2 2

fogi(xi(t))dt+ fo hi(t’x(t))dt- fo ei(t)dt-0

ifx -ri, then, by assumption

2x 2n 2n

fo gi(ri +$i(t))dt + fo hi(t,l +’l(t),"’,ri +$i(t),’",n +$n(t))dt- fo ei(t)dt <O

Ifx-i si, then again by assumption,
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2n 2rt 2n

fo g,(s,+f,(t))dt + fo h,(t,l +fl(t s, +f,(t) , +f,(t))dt- fo e,(t)dt <O.

Thus, for each Z. @ (0, 1), for every solution of

Lx .Nx

is such that x O.

Next, we will show that QNx 0 for each x KerL O and d[JQN, KerL,O] 0

where d is the Brouwer topological degree. Since J:ImQ KerL is an isomohism and

dim[ImQ]- dim[KerL n, we may take J to be the identity on R and hence
2 2 2

f0 f0 f0(JaN)(x)(t)=- g(x(t))dt- h(t,x(t)t+ e(t)dt

with, for 1, 2 n,

2 2n 2n

(JQN), (x)(t) - g(x,(t))dt- h(t,x(t))dt + e,(tMt

where x(t) (x(t),x() x(t)).

Let x KerL 0, then x is constant in R,

and there exists { 1, 2 n } such that x r or s. a similar manner we have (QN) (x) 0.

us QNx 0 for each x KerL 0. It is easy to see that P KerL .[r,,s]. t

enx ,x’ ’ are constant with

and x x r,x/ ,’ s,. Hence

2 2

(Jel,(xl- g,(r- h(t,x, r x . e,( -0

and
2s 2s 2

1 fo fo +1 fo(JQN)i(x’) ---- g,(si)dt --- hi(t,xi’, s ,xn’)dt e,(t)dt <0.

Thus (JQN)i(x)(JQN)i(x’)<O for i- 1,2,...,n. erefore, by the generalized intermediate value

theorem, d[JQN,KerL,O] O. Hence, by Mawhin’s continuation theorem, the problem (E)(B)
has at least one solution in D (L) .
THEOM 4.2. Besides conditions on F,g,e, and (H) and (He), we assume

(H4) there exists q (qx, q2,"-,q), r (r,r2,...,r), s (s,s,...,s), A (At,A2,...,A) and

B-(B,B2, ...,Bn)inR such that q < r < s andA B such that
2 2n

2g
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and

for every x R" such that

2,’t 2a

afo lfo2" g(s +f(t))dt +’n h(t, +.f(t))dt B

1/2

and for every . tE Cl([0,2n],R n) having mean value zero, satisfying the boundary condition (B) such

that

IIvll.. mini,,, c, v
Then (E)(B) has at least 2 solutions if

A < 1/2n fo e(t)dt <B.

PROOF. We construct 2 bounded open sets in C([0,2n],Rn) to apply Mawhin’s continuation

theorem in [3]. I/sing a’priori estimate, we have

x’ll,. min.,., c, v ,., / ell M0

for any solution x(t) of (Ex) (B), Z. (0,1). Hence 11. X/-Mo M,. Let I, J be two disjoint subsets

of { 1,2, ...,n } such that I UJ {1,2 ,n and define f2j by ff2j {x tE C([0,2n],R)lq r
for l, ri sx ss forj J, II.f.ll(R)sMt}; then the number of such sets is 2" and for any solution, x(t)

of (EO(B) lying in j, we have

xll.-[,,[max(I ql, ril )]2+,,
and

1/2

IIx"ll,. maxD, Mo+/’ L /
1.i

where L, depends on q,r,s andM. us IIx’ll. . boudea op set u by

nu-lxC([O,2n],R")lq,<,<r, for l,r<x <s

for j J, II:ell < 2Ma, llx"ll. < g.

Let (x, .) [D(L n aa,A x (0,1) and if (x, .) is any solution to

Lx .Nx

then (x,X) is a solution to the problem (Ex)(B),
1/2

and ere exists some { 1,2 n }, such that -q,r or s. By (H) and assumption we can see for

each (0,1), for every solution ofLx Nx is such that x Ou- d similarly, we can also see

QNx 0for eachx KerL OOu. It is easy to see P uOKerL Hieqi, ri]xHie[r,s]. t
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p {x p x q} if

Pi {x Ep xi ri} if j

Pi’’{x Ep Ixi-r} if

P/-{x Ep [x-si} if j

and let xEPi, x’EP/ with iEIUJ. Then, for iEl, we have xi-q, x-ri. Hence

(JQN)i (x) (JQN) (x’) < 0 for E I. For j EJ, we have x ri, x/ sj. Thus (JQN) (x) (JQN) (x’) < 0

for j EJ. Therefore, we have dB[JQN, ii f3KerL, 0] , 0. Thus, by Mawhin’s continuation theorem,

the problem (E)(B) has at least one solution inD(L) f3 "-i. Thus (E)(B) has at least 2 solutions.

Corollary 4.3. Besides the conditions on F, g and e, and (HI) and (H2), we assume

(Hs) there exists T- (T1, T2, T,,)> 0 in R" such that

g(T+x)-g(x) and h(t,T+x)-h(t,x)

for all (t,x) E [0, 2 n] x R".

(H6) there exists r (rl, r2, ...,r,), s (sl, s, s,), A (A,A, A,) and B (Bt,B, B,) in

R" such that 0 < s r < T, r < s, A s B
2x 2x

1 fo +lfoh(t’+(t))dt’Ag(r+(t))dt 2

2

if0 fo h(t, +(t))dt "B2"-- g(S + X(t))dt +

for every " ER such that

I111 .Cmax([ s TI, rl, [s )]

and for every . E C([0.2t],R") having mean value zero, satisfying the boundary condition (B) and

such that

1
[[’f[[ 6(min, C)[ [.2] + [[].

en (E)(B) has at least lutions if

2

A < e(tt <B.
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