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ABSTRACT. If R is a local ring whose radical J(R) is nilpotent and R/J(R) is a commutative field

which is algebraic over GF(p), then R has at least one subring S such that S w*=,S,, where each S, is

isomorphic to a Galois ring and S/J(S) is naturally isomorphic to R/J(R). Such subrings ofR are mutually
isomorphic, but not necessarily conjugate in R.
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0. INTRODUCTION
Let p be a fixed prime. For any positive integers n and r, there exists up to isomorphism a unique

r-dimensional separable extension GR(p",r) of Z/p"Z, which is called the Galois ring of characteristic

p" and rank r (see [9, p. 293, Theorem XV.2]). This ring was first noticed by Krull [8], and was later

rediscovered by Janusz [6] and Raghavendran [12].

By Wedderburn-Malcev theorem (see, for instance, [4, p. 491 ]), ifR is a finite dimensional algebra
over a field Ksuch that R R/J(R) is a separable algebra over K, then R contains a semisimple subalgebra

S such that R S J(R) (direct sum as vector spaces). Such subalgebras of R are conjugate each other.

Concerning the case R is not an algebra over a field, Raghavendran 12, Theorem 8], Clark [3] and

Wilson 17, Lemma 2.1 have proved the following: If R is a finite local ring with characteristic p"
whose residue field is GF(p r), then R contains a subring S such that S is isomorphic to GR(p",r) (hence

R S + J(R)). Such a subring S ofR is called a coefficient ring ofR. Coefficient rings ofR are conjugate

each other. We can embed R to a ring of Szele matrices over S (see 1).

If R is a finite ring of characteristic p", then R contains a subring T (unique up to isomorphism)

such that (1) R T N (as abelian groups), where N is an additive subgroup of J(R), (2) T is a direct

sum of matrix rings over Galois rings, (3) J(T) TnJ(R) pT, and (4) R T + J(R).
The purpose of this paper is to extend these results to certain rings which are not necessarily finite.

1.

In what follows, when S is a set, SI will denote the cardinal number of S. When A is a ring, for

any subset S of A, (S) denotes the subring ofA generated by S. A ring A is called locally finite if any
finite subset of A generates a finite subring. When A is a ring with 1, for B to be called a

subring of A, B must contain 1. Let J(A) denote the Jacobson radical of A, Aut(A) the automorphism

group ofA, and (A),, the ring of n n matrices having entries in A. IfA 9 1, A* denotes the group of

units of A. For a e A *, o (a) denotes the multiplicative order of a.

The Galois ring GR(p",r) is characterized as a ring isomorphic to (Z/p"Z) [X]/(f(X) (Z/p"Z) [X]),

where f(X) (Z/p"Z)[X] is a monic polynomial of degree r, and is irreducible modulo pZ/p"Z (see

[7, Chapter XVI]). By [12, Proposition 1], any subring of GR(p",r) is isomorphic to GR(p",s), where
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s is a divisor of r. Conversely, if s is a divisor of r, then there is a unique subring of GR(p",r) which

is isomorphic to GR (p", s ).

The following lemma is easily deduced from 16, Theorem 3 (I)] and its proof.

LEMMA 1.1. Let R be a finite local ring of characteristic p" whose residue field is GF(pr). If

a e R* satisfies o (a) p r- 1, then the subring (a) of R is isomorphic to GR (p", r).

A ring R will be called an IG-ring if there exists a sequence {R,}7= of subrings of R such that

R, R,. ,, R, GR(p",r,) (i > 1) and R ’= R,, where {r,}= is a sequence of positive integers such

that r, r, l(i > 1). IfR is an IG-ring described above, then R, is the only subring ofR which is isomorphic

to GR(p",r,). So we can write R =wT’=GR(p",r,).

Let p be a prime, n a positive integer and r < r < an infinite sequence of positive integers

such that r, r, . By the fact we observed above, there exists a natural embedding
j-! I+lt’,+’GR(p",r,)---GR(p",r,/)foreachi> 1. Letusputt,=idaR(p,,.r,landt,=r:_ t_2o...ot, for

<i <j. Then we see that {GR(p",r,),tJ,} is an inductive system. The ring R =lim_GR(p",r,) is

an IG-ring. Conversely, any IG-ring can be constructed in this way. An IG-ring R 7’= GR(p", r,) is

a Galois ring if lRI is finite. When A is a ring with 1, a subring SofA is called an IG-subring ofA if S

is an IG-ring.

PROPOSITION 1.2. Let R ’= GR(p", r,) be an IG-ring. Then:

(I) R is a commutative local ring with radical J(R)= pR. The residue field R/pR is

= GF(p ’).
(II) If e is a positive integer such that < e < n, then R/p’R is naturally isomorphic to the

IG-ring w*= GR(p e, r,).
(III)

byp.

(IV)

(V)

(VI)

R is a proper homomorphic image of a discrete valuation ring whose radical is generated

Any ideal of R is of the form peR(O < e < n).

R is self-injective.

Aut(R) lim,_aut(GR(p",r,)) lim,_Aut(GF(p ’)) =aut(w*:=, GF(p r,)).

PROOF. (I) and (II). For each > 1,

0 --) pGR(p",rl) - GR(p",r,) -- GR(p,r,) --) 0

is an exact sequence of GR(p",r,)-modules. So we get the result by [2, Chapitre 2, 6, n 6, Proposition

8].

(III) Let us put K 7’= GF(p ’). Let W,(K) be the ring of Witt vectors over K of length n

(see [15, Chapter II, 6] or [5, Kapitel II, 10.4]. By (I) and [5, Kapitel II, 10.4], both R and

W,(K) are elementary complete local rings (in [14], elementare vollstandige lokale Ringe)of charac-

teristic p" whose residue fields are K. Since an elementary complete local ring is uniquely determined

by its characteristic and residue field (see [14, Anhang 2]), we see that R is isomorphic to W,(K). Let

W(K) be the ring of Witt vectors over K of infinite length. By [7, Chapter V, 7], W(K) is a discrete
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valuation ring whose radical s generated by p. Since W(K) s the projective limit of {W,,(K)}’= (see

[15, Chapter II, 6]), W,,(K) is a homomorphic image of W(K).

(IV) IfRisadiscretevaluatlonringwithradicalpR,thenanyidealofRisoftheformpJR(] >0),

so the result is clear from (III).

(V) Clear from (III), since any proper homomorphic image of a principal ideal domain is

self-injectlve.

(VI) Immediate by [9, p. 294, Corollary XV.3].

Let {rl}*__ be an infinite sequence of positive integers such that r and rlr/(l > 1), and

S 7’-_ GR(p", r) be an IG-ring of characteristic p". Let n n > n2 > > n, be a nonincreasing

sequence of positive integers. Let us put Sj wT--t GR(p ’’j, r) for < j < t. Let" S ---> S be the natural

homomorphism followed by the isomorphism S/p"JS--S of Proposition 1.2 (II). Let us put

U(S;n,,n2,.. nt) {(,j)E(S) Ic,jEp’ ifi>j} It is easy to see that U(S;n,n2,.. n,)forms

a subring of (S)t,. Let M(S;n,n rtt) denote the set of all t matrices (a,), where a, Sj, and

a, p’-"S for > j. Let @ be the mapping of U(S;n,nz n,) onto M(S;n,n n,) defined by

(,) t- (a,) where a,j (c,). It is easy to check that addition and multiplication in M(S;nt,n2 n,)
can be defined by stipulating that @ preserves addition and multiplication. Following [17], we call

M(S;n,nz n) a ring of Szele matrices over S.

LEMMA 1.3. (cf. 17, Lemma 2.1 ]) Let R be a ring with which contains an IG-subring S of

characteristic p". IfR is finitely generated as a left S-module, then there exists a nonincreasing sequence

n n > nz > > nt of positive integers such that R is isomorphic to a subring of M(S;nl,n nt).

PROOF. By Proposition 1.2 (V), there exists a submodule N of R such that R S @N as left

S-modules. By Proposition 1.2 (III), there are a discrete valuation ring W and a homomorphism of W

onto S. By defining

ay=(a)y (a W, y6N),

N is a finitely generated W-module. Since a finitely generated module over a principal ideal domain is

a direct sum of cyclic modules, there exist Yt, Y y E N such that N @= Wy,. Let s + 1, x
and x, y,_ (2 < < t). Then we get R @= Sx,. Let Sx, S/p"’S as S-modules (n n). Without loss

of generality, we may assume nl > n2 > > n,. For each a R, we can write

x,a Y ,x (,
_

S)

Since

O=p x,a ,7: p ct, x
-rttSby Proposition 1.2 (IV), x, p’ if > j. As , is uniquely determined modulo p’S by a, we can

define :R ---) M(S;n,n n) by a I-) ((o,)). It is easy to see that 1/is an injective ring homo-

morphism.

2.

Let G be a group, and N a normal subgroup of G. Let p :G --) H G/N be the natural homo-

morphism. A monomorphism k H -- G will be called a right inverse of 9 if 9 k idn. If k is a right

inverse of p, then G is a semidirect product of N and .(H).
The following lemma is a variation of Schur-Zassenhaus theorem 13, Chapter 9, 9.1.2].
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LEMMA 2.1. Let G be a group, and N a normal subgroup of G. Let p" G -4 H G/N be the

natural homomorphism. Assume that N s locally finite, and there exists a sequence {H,}7’= of finite

subgroups of Hsuch that H, cH,+(i > I).v.)7":H,=H and. for any a e N and any > l,o(a) and [H,[
are copnme. Then:

(I) There exists a right nverse ’H - G of p.

(II) If, for some m > 1, there exists a monomorphism lu" H,,, --> G such that 9 It’ id.,,,, then
there exists a right inverse It" H --4 G of 9 such that It ],,,= It’.

(III) There exists a unique right inverse of 9 if and only f G is a ndpotent group.

(IV) If It’ H,,, ---9 G and la"" H,,, -9 G are monomorphsms such that 9 It’ 9 It" id.,,,, then

It’(H,,,) and It"(H,,,) are conjugate n G.

PROOF. (I) For each x e H, we can choose an element g, of G such that 9(g)=x. As G is

locally fimte (see [13, Chapter 14, 14.3.1]), the subgroup G of G generated by {g,}., is finite, and

p 1, is a homomorphism of G onto H,. Let us put N =Ker(9 ],). Since [N[ and ]H[ are

coprime, by Schur-Zassenhaus theorem 13, Chapter 9, 9.1.2], there exists a right inverse . Ht ----) Gi
of 9 Ic,, Next, let {g,’}, . be a set of elements of G such that 9(g,’) y for any y H, and

{g} n, {g,’},, ," Let G2 be the finite subgroup of G generated by {g,’}, ,... Then 9 1: is a

homomorphism of G2 onto H2. By [13, Chapter 9, 9.1.3], there exists a complement subgroup L of

N=Ker(p I) in G2 such that L ,(H). The mapping Lz’Hz---)Gz defined by

H G/N bN_ b(b L) is a right inverse of 9 12- For any a H L(a)-.l(a) NoL { },

hence we see L In,= k. Continuing this process inductively, we get a sequence G G2 c of finite

subgroups of G and a sequence {k,}’__ of right inverses k," H, - G, of 9 1, such that . In, ., for any
_< < j. Then . lim_ %, H wT__ H, -- G is a right inverse of 9.

(II) can also be proved in the same way by starting from It" H,,, -- It’(H,).

(III) Assume that ." H -- G is the unique right inverse of p. Then G is a semidirect product ofN

and ,(H). We shall show that this is the direct product. Suppose that there exist c e N and z e H such

that c.(z) .(z)c. Let us define It’H --) G by It(b) z-k(b)z. Then It is a right inverse of p different

from ,, which contradicts our hypothesis. So G is the direct product ofNand .(H). Hence G is nilpotent.

Conversely, let us suppose that G is nilpotent, and . and Ix are right inverses of 19. For each > 1,

let G, be the subgroup of G generated by k(H,)w It(H,). Then 9 1, is a homomorphism of G, onto H,.
Both ,(H,) and It(H,) are complement subgroups for N, Ker(p I,) in G,. Since G, is a finite nilpotent

group, for each prime divisor q of G,I, G, contains a unique q-Sylow subgroup. Each G, is the direct

product of such Sylow subgroups. As n, and N, are coprime, we have X(H,) It(H,). So , In,= It In,.
Since this holds for each > 1, we see . It.

(IV) Let L be the finite subgroup ofG generated by It’(H) t.) It"(H,). Then 9 It. is a homomorphism
ofL onto Hm. Since lKer(9 Iz)l IN LI and n,,I are coprime, by Schur-Zassenhaus theorem, It’(H,)
and It"(H,,,) are conjugate in L.

Let G, N, H and p" G H be as in Lemma 2.1. We say that G has property (GC) with respect to

N if, for any two right inverses It and v of 9, It(H) and v(H) are conjugate in G. If H is finite, then by
Lemma 2.1 (IV), G has the property (GC) with respect to N.
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Let R be a ring wth 1. Let S be a subring of R, and I J(R)S. The homomorphism of S/I to

R/J(R) defined by a + I a +J(R)(a e S) is in.lective. We shall say that S/I is naturally isomorphic
to R/J(R) if this homomorphism is onto. If S is a local subring of a local ring R and if J(S) is nilpotent,
then J(S)= J(R)S.

Now we shall state main theorems of this section, which generalize the result of R. Raghavendran
[9, p. 373, Theorem XIX.4].

THEOREM 2.2. Let R be a local ring with radical M. Assume that M is nilpotent, and K R/M

is a commutative field of characteristic p (p a prime) which is algebraic over GF(p). Then there exists
an IG-subring S of R such that S/pS is naturally isomorphic to K.

PROOF. Since K is algebraic over GF(p), KI is either finite or countably infinite. So there exists

a sequence {K,}*= of finite subfields ofK such that K, c K, ,(i > 1) and 7_-, K, K. Let K, GR(p r,).
The natural homomorphism rt R -- K induces a group homomorphism x* : [R. of R* onto K*. Each
(1 +M’)/(I +M’*) is isomorphic to the additive group M’/M’+l. As pM’M’/, the order of each
element of +M Kern* is a power ofp. Furthermore, K* 7’= K,*, where ]K,*[ p is coprime
to p. So, by Lemma 2.1 (I), there exists a right inverse : K* --) R* of rt*. For each > 1, let z, be a
generator of K,*. By Lemma 1.1, the subring S, (X(ot,)) of R is isomorphic to GR(p",r,), where p" is

the characteristic ofR. Consequently, S (k(K*)) 7=S, is an IG-subring of R, and SIpS is naturally
isomorphic to K.

Such a subring S of R stated in Theorem 2.2 will be called a coefficient subring of R. When R is

a commutative local ring satisfying the assumption of Theorem 2.2, S coincides with the subring

described in 11, p. 106, Theorem 31.1 ].

Let R, M, S and K t3*= GF(p ’) be as in Theorem 2.2, where {r,}7= is a sequence of positive

integers such that r, r, t(i > 1). Let p" be the characteristic of R. Let S" be another coefficient

subring ofR. From what was stated in 1, S’ 7’-- GR(p", r,), which is isomorphic to S. By Proposition

1.2 (V), there exists a left S’-submodule N ofR such that R S" N as left S’-modules.

Ifk K* --> R * is a right inverse ofx*, then by the proofofTheorem 2.3, S Q,,(K*)) is a coefficient

subring of R.

We shall show that, if , and It are different right inverses of n:*, then (L(K*)) (It(K*)). Let us

suppose ((K*)) (It(K*)) and denote it by S. Let {K,}7’__ be a sequence of finite subfields of K such

that K, GF(p ’), K, K, t(i > 1) and t37"= K, K. As X, : It, there exist a numberj > and an element

of K such that k(cz) :g: It(o:). By Lemma 1.1, both T (L(K*)) and T’= (l.t(K*)) are isomorphic to

GR(p", r). As S wT-- (,(K,*)), there exists a number > such that T t3 T’ c:: 0,,(K*)). Since QL(Kt*))
is a Galois ring, T _-- T’ implies T T’. The restriction x It. is a homomorphism of T* onto K,*. Both

),, I-. and It Ix,. are right inverses of rt: It., so T* is the direct product of L(K*) and Ker(x It.) + pT,
and is also the direct product of It(K*) and +pT. As IK*I and [1 +pTI are coprime, we have

X(K*) It(K*). So there exists some 13 K* such that () It(J3). Then cz n:* ),,(cz) n:* it(l)= 13,
which means ),.(o:) la(x). This contradicts our choice of

By making use of Lemma 2.1 (I), we can easily see that, if S is a coefficient subring of R, there

exists a right inverse ),.: K* --) S* of x* such that S Q,.(K*)).
Summarizing the above, we obtain the following theorem.

THEOREM 2.3. Let R be a local ring with radical M. Assume that M is nilpotent, and K R/M

is a commutative field of characteristic p (p a prime) which is algebraic over GR (p). Let n* R* ---) K*
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be the group homomorphism induced by the natural ring homomorphism :" R K. Then"

(I) If S’ is a coefficient subrlng of R, then there exists a S’-submodule N of R such that R S’ @ N

as left S’-modules.

(II) All coefficient subnngs of R are isomorphic.

(III) If 2,." K* -- R* is a right inverse of n:*, then S ()(K*)) is a coefficient subring of R. Con-

versely, if S is a coefficient subnng of R, then there exists uniquely a right inverse

such that S ((K*)).
(IV) All coefficient subrings of R are conjugate in R if and only if R* has property (GC) with

respect to + M.

With the same notation as in Theorem 2.2, M/M is regarded as a left K-space by the operation

a x ax (-d K R/M,- e M/M2).

THEOREM 2.4. Let R be a local ring with radical M. Assume that M is nilpotent, and K R/M

is a commutative field ofcharacteristicp (p a prime) which is algebraic over GF(p). Let Sbe a coefficient

subring of R. Then R is finitely generated as a left S-module if and only ifM/M is a finite dimensional

left K-space. In this case, there exists a finitely generated left S-submodule N ofM such that R S N

as left S-modules, and there exists a nonincreasing sequence nl > ii _> _> n, of positive integers (p"’
is the characteristic of R) such that R is isomorphic to a subring ofM (S ;n,n2 n,).

PROOF. Assume thatR is finitely generated as left S-module. ThenR is a Noetherian left S-module,

since S is a Noetherian ring by Proposition 1.2 (IV). As M is a left S-submodule of R, M is a finitely

generated left S-module. This implies that M/M is a finite dimensional left K-space.

Conversely, let us assume that M/M is a finite dimensional left K-space. Let t.o be the nilpotency

index of M. Let x,x:, xa be elements ofM whose images modulo M form a K-basis of M/M2. As

S/pS is naturally isomorphic to K, any element of y ofM is written as

y=a,=a,x,+ y" (a, S,y’ M2).

Let

z XJ:, b,x + z’ (b S,z’ b
be another element of M. Then

yz=Y.,=,a,x,bjxj+w’" (w’" e M3).

Each x,b is written as

x,b Z= c, xa + w,j" (q,j e S, w,’ e M2).

So we see that any element v’ ofM can be written as

v’=’[4=a,x,x+v’" (a, S,v" M3).

Continuing in this way, we see that any element ofM is written as S-coefficient line combination
of distinct products of- or fewer x,’s. So M is a finitely generated left S-module. Also K R/M

is a finitely generated left S-module, hence R is a finitely generated left S-module.
Now suppose thatR is finitely generated as left S-module. By Theorem 2.3 (I), there exists a finitely

generated left S-submodule N’ of R such that R S N’ as left S-modules. By Proposition 1.2 (III),
there exist a discrete valuation ring V and a homomohism of V onto S. Defining
ay (a )y (a V, y N’), we can regard N’ as a left V-module. Then there exist x,x2 xt N"
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such that N’= @i= Vx, )I= ,Sx,. By putting x0 1, we get R @_-oSx,. Let c,,c2 c, be elements

of S such that c, x, under the natural homomorphism :" R -- K. Let us put Y0 and y, x,- c, for

<i <t. Then y, e M(1 <i < t)andR =l=oSx,=i=oSy SoN i__ Sy, has the desired property.

The last statement is immediate from Lemma 1.3.

Let R be a local ring described in Theorem 2.2. Then R may have more than one coefficient subring.

Concerning this subject, first we can state the following.

THEOREM 3.1. Let Tbe an IG-ring of characteristic p" different from GR(p", 1). Then, for any

infinite cardinal number %, there exists a local ring R such that

(1) M J(R) is nilpotent,

(2) K R/M is a commutative field of characteristic p (p a prime) which is algebraic over GF(p),

(3) coefficient subrings of R are isomorphic to T,

(4) all coefficient subrings of R are conjugate in R, and

(5) % is the number of all coefficient subrings of R.

PROOF. Let T=w7=GR(p",r,), where {r,}*= is a sequence of positive integers such that

r, r, (i > 1). Let K T/pT and" T -- K be the natural homomorphism. As K is a proper extension

of GF(p), there exists an automorphism of K different from idK. Let be the automorphism of T

which induces t modulo pT (see Proposition 1.2 (VI)). LetA be a set of cardinality %, and V ,,T
be a free T-module. The abelian group T V together with the multiplication

(a,x) (a’,x’) (aa’,ax" + (a’)x)

forms a ring, which we denote by R. Let n:’R K be the homomorphism defined by (a,x) t- ’(a),

and M Kerry. As R/M K and M l= O, R is a local ring with radical M whose residue field is K.

By Theorem 2.3 (1117, there exists a one-to-one correspondence between the set of all coefficient subrings

of R and the set Yof all right inverses of :* = IRo" R* -- K*.

By the embedding T 9 a - (a, 0) R, T is regarded as a coefficient subring of R. So, by Theorem

2.3 (liD, there exists a right inverse ." K* R* of :* such that (,(K*)) T. Since K wT--t GF(pr’),
there exists a numberj > such that is not the identity on GF(p). Let 7be a generator of GF(p’)*,
and c ,(?). It is easy to see that, for any z V, R* h (c, z) is of multiplicative order p 1. So,

for each z V, we can define a group homomorphism

tz" GF(pr)* R* by - (c,z)’. By Lemma 2.1 (II), we can extend t.tz" to l.t Y. If V z,z2 and

Z :g: Z2, then l.tt : ll,z2. So YI > VI %.

Let S be a coefficient subring of R. We shall show that S is conjugate to T. By Theorem 2.3 (III),

there exists a right inverse ," K* - R* of n:* such that S (,’(K*)). Let ,’(T) (c’,z), where c" T

and z V. Let U be the finite subgroup of R* generated by .(?) and .’(T). As the restriction n: Iv is a

homomorphism of U onto GF(p)*, by Schur-Zassenhaus theorem, there exists

(b, w) R* (b T, w e V) and an integer such that ,’(’f)=(b,w)-.(’)(b,w). Then,

(c’,z)=(b,w)-i(c’,O)(b,w), which implies c’=c’. As rg(c’)=lt(/(c’))=?=(,(?))=’(c), so

c’=c and /(?) (c,z). Let x {c-(c)}-lz. Suppose that cte K satisfies ct =?for some integer

m. Let ,(ct)= a. Then, by the same reason as above, we can write .’(ct)= (a, y) for some y e V.
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As

(c, Z ’(’) k’(O") (a, y)’" (a’", a" (o(a))’" a or(a }-’y ),

we get c =a" and z {c -o(c)} {a -o(a)}-’y. So (l,x)t’(ot)=(a,y +o(a)x)=(a,ax)=l(a)(l,x).
As K* is the union of cyclic subgroups generated by such o which contain GF(p")* (generated by

this prove.,, S (U(K*))= (1,x)-’T(1,x). So YI, the number of all coefficient subrings of R. does not

exceed X- As we have seen lYI >X, we get lYI =X.

Next we shall consider the uniqueness of coefficient subrings.

A finite local ring T is called of type if T is generated by two units a and b such that

(1) ab v:ba,

(2) a b e J(T), and

(3) o(a)=o(b)=lT/J(T)l 1.

If T is a finite local ring of type ), then T* is not a nilpotent group. For, let us suppose that T is

a finite local ring of type ). Let a and b be generators of T satisfying (1)-(3). Let A and B be cycic

subgroups of T* generated by a and b respectively. Let K T/J(T) GF(pr). Then IAI BI p"
is coprime to J(T)I. If T* is nilpotent, then A B, as both A and B are complement subgroups of

+ J(T) in T*. This contradicts (1), so we see that T* is not nilpotent.

THEOREM 3.2. Let R be a local ring with radical M. Assume that M is nilpotent, and K R/M

is a commutative field of characteristic p (p a prime) which is algebraic over GF(p). Then the following

are equivalent.

(i) R has a unique coefficient subring.

(ii) R* is a nilpotent group.

(iii) R* is isomorphic to the direct product of K* and + M.

(iv) R* has no finite local subring of type ).

PROOF. (i) (ii). Clear from Lemma 2.1 (III) and Theorem 2.3 (III).

(i) :=:, (iii). Let rt* rt I,. R* K* be the group homomorphism induced by the natural homo-

morphism n:R K. Since R has a unique coefficient subring, by Theorem 2.3 (liD, there exists a

unique right inverse of n*. Then R* is a semidirect product of +M and K*. Let z be any fixed

element of +M. The mapping It:K* R* defined by K* 9 etl- z-k(ot.)z is a right inverse of*, so

It by our hypothesis. This implies that each element of %(K*) commutes with each element of + M.
Hence R* is the direct product of +M and k(K*).

(iii) =::, (iv). Let us suppose that R contains a finite local subring U of type (1). By the proof of

10, Lemma ], +M is a nilpotent group. If R* is isomorphic to the direct product of K* and + M,
then R* is nilpotent. So U* is nilpotent, which is a contradiction.

(iv) :=> (i). Assume that R has at least two different coefficient subrings. Then there exist at least

two different right inverses I and l.t of *. Let {K,}’__, be a sequence of finite subfields of K such that

K, K, +, and 7: K, K. There exists a numberj such that I Ix, It Ix,.. Let ],be a generator of K*.
Then the subring ((?), t(?)) of R is a finite local ring of type (1).

4.

From [9, p. 373, Theorem XIX.4 (b)] and the proofofTheorem 3.1, one may expect that, in Theorem
2.3, any two coefficient subrings ofR are always conjugate. However, from the following example, we
see that this is incorrect.
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Let K w7=GF(p ’), where {r,}7: is a strictly ncreasing sequence of positive integers such that

r, r, (i > 1). Let {or,}’= be automorphisms ofK such that or, is not the identity on GF(p") (i > 1) and,

forj < i, or, is the identity on GF(pr). Let V 0)7= tKx be a left K-vector space with basis {x,}7__ i.
We

can regard V as a (K,K)-bimodule by defining

(E, c,x,)a ,, c,or,(a)x, (Y, c,x, e V,a K).

The abelian group R K 9 V together with the multiplication

(a, y) (b, z) (ab, az + yb) (a, b K, y, z V)

forms a local ring with radical M (0, V), which satisfies the assumption of Theorem 2.3. The homo-

morphism rt:R K defined by (a,x) - a gives the isomorphism R/M--K. The subring
S { (a, 0) a e K} of R is a coefficient subring of R.

For each > 1, let y, be a generator of GF(p ’)*. Then we can write ?, ?, for a suitable integer

m,. We shall define elements {u,}7__ ofR* inductively as follows: Let u (q( ,x). For u,, (Z,, ’__ rjxj)
(rj e K), let

a, {T,,-%(Y.)}-’ {y,,+-%(y.+)}r (1 <j <n)

and

" axj + x,, ,).Un+=(Tn+, t=

Then it is easy to check that o(u,)=p r’- and U,=u,mi. Let f’GF(p")* --)R* be defined by

Tit-) u’,(t e Z). Sincef Ior(/,,=f for j < i, there existsf= lim_,f K* --) R*. Asfis a right inverse of

* n: Is." R * K*, so S Q’(K*)) is a coefficient subring of R.

We shall show that S, and S are not conjugate in R. Let us suppose that there e.xists an element

v (s,,d,x,)e R* (s e K*,d, K) such that S, v-Sv. Then, for each > 1, there exists some

b, e K* such thatf(T,)= v-’(b,,O)v. Then,

u, (/,,Z-__’, r/x, + x,) (r," e K)

-Iv (b,,0)v

(s-,-s-(E, d, x,)s-) (b,, O)(s, Z, d,x,)

(b,,Z ,(s-’b, d s-’d%(b,))x),
which yields

So, for any > 1, we see d, : 0. This contradicts that ,, d, x, is an element of the direct sum V @7’= ,Kx,.

In conclusion, we shall state a theorem which is a generalization of [3, Theorem].

THEOREM 4.1. (cf [9, p. 376, Theorem XIX.5] and [4, p. 491, Theorem 72.19]) LetR be aring

with 1. Assume that J(R) is nilpotent. Let

@ (K2) @ @ (Ka),,,,,,,R/J(R)= (K,).,., .
where each K,(1 < < d) is a commutative field of characteristic p (p a prime) which is algebraic over

GF(p). Then there exists a subring T of R which satisfies the following.
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(i) R T N (as abelian groups), where N s an additive subgroup of R.

(ii) T is isomorphic to a finite direct sum of matrix rings over IG-rings.

(iii) J(T)=TJ(R)=pT.

(iv) T/pT is naturally isomorphic to R/J(R).

Moreover,, if T’ is another subring of R satisfying (ii)-(iv), then T’ is isomorphic to T.

PROOF. Let R=R/J(R)=Re,(R)R-d2@...(R)R-d,, where each R-d,(l<i<d) is a simple

component ofR and e, is a central idempotent of R. Let R-d, (K,),,,,,,, where K, is a commutative field

which is algebraic over GF(p). Let rt’R --)R be the natural homomorphism. There are mutually
orthogonal idempotents e,e2 ea of R such that el +e2 + +e, and (e,) ,(1 < < d). Then,

R =elRe @ezRe eaRea@ (,je, Rej)

as abelian groups. Since each e, Re, is semiperfect and e, Re,/J(e, Re,) =_ Rb-, (K,),,, ,,,, there exist a local

ring S, and an isomorphism , of e, Re, onto (S,),,, .... (see, for instance, 1, p. 160, Theorem 21 ]). Let

t= ++ +d?a eRe e2Re eaRea .-.>

A (S,),,, ,,, (S2),,2, ... (Sa),u,
be the isomorphism. Since S,/J(S,) =_ K,, by Theorem 2.2 and Theorem 2.3 (I), there exist an IG-subring

T, and a left T,-submodule N, of S, such that S, T, N, (as abelian groups), and T,/p T, is naturally
isomorphic to S,/J(S,). Then

n (T,)., ., ,
is a subring of A. Let T=,-’(B). As J(e, Re,)o.-’((T,),,,,)=J(-’((T),,,,)), we see

J(t) TcJ(R)= pT and that T/pT is naturally isomorphic to

(eRe ezRez eaRea)/J(eRe eRe eaRea) R/J(R)

Let us put

U =,-l{ (N,),,,,*(Nz),2,*... * (Nd),,a,,,
Then we see R T N.

Now, let us suppose that T’ is a subring of R satisfying (ii)-(iv). Let e andfbe primitive idempotents

of T’. We claim that Re Rf (as left R-modules) if and only if T’e T’f (as left T’-modules). Let
rt:(e) e and x(f) f. Assume that Re =_ R’f. Then R e R f as left R-modules. Both R e and R f are

minimal left ideals of R, so they are contained in the same simple component of R, which implies that
J(R) does not include eRf. Conversely, ifJ(R) does not include eRf, then R- _= ., which means Re Rf
(see, for instance, [1, p. 158, Theorem 16]). Thus we see that Re =Rf (as left R-modules) if and only
if J(R) does not include eRf. Similarly, T’e T’f (as left T’-modules) if and only if J(T’) pT" does

not include eT’f. Since T’/pT" is naturally isomorphic to R/J(R), J(R) include eRf if and only if pT"
includes e T’f. So we see that Re Rf (as left R-modules) if and only if T’e =_ T’f (as left T’-modules).

By making use of matrix units, of R is written in T as

=(el +e2+... + e,,)+ (e + e:,2+ + e2,,)+ +(edt +ed2+ +ed,),
where e,, are mutually orthogonal primitive idempotents of T, and Tek, Teo (as left T-modules) if and
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only if k 1. Similarly,

(f,, +J;2 + +fi,,,,) + (f2, +f..2 + +f )+ + (fd, +fa’. + +fa.,.),

where f, are mutually orthogonal primitive idempotents of T’, and T’f, =_ T’fj (as left T’-modules) if

and only if k I.

As e,Tek,/pek,Te, ek,Re,/e,J(R)e,, we see that e, and ft., are primitive idempotents of R. Then

R @Rek, )Rfj are indecomposable decompositions.
By what was stated above, Krull-Schmidt theorem tells us that there exists a permutation o" of

{ 1,2 d} such that n, =mo,)and Re, --Rfo, as left R-modules (I < <d, <k,l <n,). By renum-

bering, we may assume n, m, and Re, =_ Rf (1 < < d, < k, < n,). Now,

T (e,Te,),,, x, ) (e21Tez) ) (edlTeal),,,,
and

T’= ,r,),,, ,,, ),,2x,, x,,,’

where e, Te, andf T’f are IG-rings. Hence, to complete the proofit will suffice to show e, Te, =_fT’f.
As e,Te, is an IG-ring which is naturally isomorphic to e,Re,/e, J(R)e,, so e,Te, is a coefficient

subring of e,Re,. Similarly, fT’f is a coefficient subring of fRf. As

e,Re, End(Re,) =_ End(Rf) --fRf, we see e,Te, --fT’f by Theorem 2.3 (II).
Note. It is unknown when the subring T of Theorem 4.1 is unique up to inner automorphism of R

(see [3, Problem].
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