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Abstract

In the paper a convolution of the Hankel transform is constructed. The convolution is used
to the calculation of an integral containing Bessel functions of the first kind.
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1. Introduction
The convolution of a modified Hankel transform, introduced in [4], has been studied in [1], [4]

in classical sense and in [7] in a space of generalized functions. For an another modified Hankel
transform the other convolution in some space of functions is obtained (see [5]).

The present paper is devoted to propose a definition of a convolution and to prove the convolution
property in the classical sense of the following standard Hankel transform (see [6], [8])

9[f](x) yJ(yx)f(y)dy, Re(,) > (1)
2

As one of its applications, a formula of infinite interval of a product of Bessel functions of the first
kind is established.

2. Convolution of Hankel Transform
Set

2-3’x-’ f/h(x) V/.r(y + 1/2)
,,+v>,l,,-,,l<

x (uv)’-"f(u)g(v)dudv, x,

_
(0,

()

The function h(x) is called the Hankel convolution of the function f(x) with the function g(x). It
is easy to see that the convolution is a commutative operator of f and g.

Let L(R+;p.(x)) be a class of integrable functions f(x) with a weight p(x) > 0 in R+ (0, oo).
The main aim of this section is to prove the following:
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Theorem. Let Re(u) > and f(z),g(z) E L(R." /’). Then the function h,(z) in (’2) exists
2

and there hoils the convolution property

9([h](z) x-9f[f](x)f.[g](x), (3)

where :f,, is the Hankel transform (1).
Proof. It is well known [6, (2.12.42.15)] that

fo -J.( zt )J.( ut J( vt )dt

where Re(u) > and
2

Since

VTv( + /2)

+() / v()’ v() >- 0,

0, () < 0.

(4)

co,( ) + oJ,,(x) 2 4 (5)
o (), ( +0),

(see [3]) it is easy to conclude that there exists such positive number C independent of z (0, oo)
that

and z-J.(x) L(R+) when Re(u) > . Therefore we have

t’-"J.(xt)J(ut)J.(vt)dt
(6)

Cz()- 1dt
Cza)-

<= t-EJ(t),
where C is independent of x, u, v and N. In particular, mng use the formul (2) and (4) with
the help of the estimate (6) we have

Ih()l N C(- lf()(v)ldd < ,
ince I(),() e (.;. Thus the function h() in (2) exists. urthermore, applying the
ubini theorem, e obtain

t-".(t) ..(t).(t)()() t ()

Here we have used the estence N the genkel transform defined by (1) Nr Nnctions from
; (R+;) (see [2], [8]). Moreover, we notice the fct

x[I]() o (), ( +0) for I e (,;)
from [2, p. 74]. Therefore, if we set

k(t) t-"gf[f](t)rf.[g](t), (S)
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W htve
() o("), ( +0). ()

On the other hand we have

CV/’J u v/’f u du <I:c.[/](t)l =< , e (0,), (0)

and lherefore,
,() o (,--’), ( +).

Since Re(u) > 1/2, from (9), (11) we conclude that k(t) L (R+" ). Therefore the form,,la (7)
can be rewritten in the form

h(,) C[]().
ttence, by using the inversion formula of the Unkel transform in the class L(R+; (see [2], [8]):

fir,., [3Q[k]] (z) k(z), (12)

we obtain
k(z) 3f[h](z). (13)

As k(z) has the form (8), the formula (13) coincides with the formula (3). Thus the theorem is

proved.

3. Application
As an application of Theorem we consider the integral

j--1

with a, > 0 (j 0, 1,-.., n) and Re(y,) => 0 (j 1,.,9 n). We will prove that

f,*’’"’"" (a0, a, a,,) 0

when
n-3

ao>a,+.-’+a,, and <Re(uo)< Re(u,)+.
We know that it is valid for n (see [6, (2.12.31.1)] for the case Re(y,) 0, and [6, (2.12.35.12)]

for the case Re(ya) > 0). Suppose that it is valid for every k __< n. We have to prove it for the case
k n + 1. Put

gO,,,-.-,, (t, a,) fi,,,.. ,,, a,,... (t2+y) -’12

By using (5) we have

gO,,,...,,(t,a a,,)=O(t*)Yl ,’"Yn

Suppose that

(t +0)

n-3
< Re(vo) < Re(v,)+ 22

(14)

0..--. (t,a ...,a,,) L (R+; v/") Therefore, by using theThen from (14) we conclude that 9u,.Y!,, "
formula (10) we obtain

tou,,.,u" aa,... (z +O,z +). (15)

Since

o [a’’ .... (t,a, a,)]Lain, ,,. ’’’, () t’’ .... (z, a, a.)
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the forr,mla (15) can ie real as

,, ,o (z,a,...,,) 0

But by l}o assumplion we have

(x +O,x +c).

,1, ,n
,Yn (F, al,..-, an) 0

when z > a +’’" + an. Therefore

and by (12)

and

.... (x a, a,,) E L (R+; V’)

Analogously, we have

under the conditions

t’’t’"+’ (X an+l)
_
i (R+. v/’)

< Re(uo) < Re(u.+,)- 1.
2

Since

g,’’,,.+,..../’ (t, al, a.+,) t-a"’’’o,,,..... (t,a,, a.)a’’’’+’o.+, (t, a.+,),
then by using the theorem we obtain

(y,a, a.)] (t)] (x)Yn+l

21-3’x- //vr(,o + /2)
u+v>z,lt,-vl<z

(16)

Since

and

provided that

fo,.+, (v, a.+l du dv.X cr’0’r’l’/1.’".l/."r’r’ (it, al, ", art)

.... (u,a a,)=0 when u>a+..-+a,Yn

f=’o,=’,,+, (V, an+l) 0 when v > a.+

n-3
< a(.o) < a(,) + --7--3=1

we conclude from (16) that

Re(g0)- Re(tn+l) < -1,

f,.’o,,,,-,.+, (z a, 0 when z > a +--. + a.+1, ,Yn+l ln+l

under (17).
The formula (18) can be analytically continued to the domain

"+z n- 3
-1 < (.o) < 2 (",)+

23=1

(7)

(J8)

Thus we have proved
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Corollary. Let

with

anti

Then

-1 <Re(vo)< Re(u.,)+ ’) % >O(j= 1,...,n)

ao > a+..-+

fot’+lJo(aot) fi (t2 + y)-"’/2J,, (%t2 + y)dt O. (19)
)=0

The formula (19) is a generalization of the formulae (2.12.44.7) (the case yl y, 0)
and (2.12.44.8) (the case Re(yi) > 0,--., Re(y,,) > 0)in [6].
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