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ABSTRACT. An attempt is made to study the problems of spherical and circular inclusions in elasto-

plastic solids under the action of internal increasing pressure and external constant pressure, taking into

consideration of the work-hardening effect. Particular attention is given to the linear work hardening

effect on both problems. It is shown that results of this analysis are in good agreement with those of

ideal plastic solids.
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1. IN’IODUCTION.
Several authors including Mott and Nabarro ], Eshelby [2 5], Jaswon and Bhargava [6] Willis

[7 8] have made systematic investigations of the problems of spherical and cylindric’,d inclusions in an

elastic medium. Both Bhargava [9] and Sengupta [10] have used the principle of minimum energy to

study problems of symmetric anisotropic inclusions in an elastic medium. Tresca 11 has shown that a

metal yields plastically when the maximum shear stress attains a critical value. Bhargava [12] has

investigated the problems of inclusions in elasto-plastic solids under the assumptions of the infinitesimal

theory of strain and perfect plasticity conditions satisfied by an elastic-plastic solid. From a physical

point of view, the work-hardening effect is important in a plastic material even though the consequences
of this effect are quite complex. Hopkins 13] has included the work-hardening effect of the material in
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his problem of dynamical expansion of spherical cavities in metals. Sengupta and his associates [14

15] have studied the problems of inclusions in elastic-plastic solids of work-hardening material of finite

and infinite extent. On the other hand, Tokuoka [16] has investigated the plastic deformations and

instability of spherical shells under internal pressure. In spite of this progress, further investigation of

the inclusion problems in an elastic-plastic medium is needed.

This paper is concerned with the problems of spherical and circular inclusions in elasto-plastic

solids under the action of internal increasing pressure and external constant pressure, taking into

consideration of the work-hardening effect. Special attention is given to the linear work-hardening

effect on both problems.

2. SPHERICAL INCLUSION IN ELASTO-PLASTIC SOLIDS.

We consider a spherical region of radius a in a finite elasto-plastic material which tends to

undergo a dimensional change to a sphere of radius a (1 + i) where lies in the region of plastic strain.

We designate the spherical region as inclusion, and the outer material as matrix, where its external

boundary is a spherical surface of radius b. The sphere is under constant external pressure, because of

the constraints of matrix, stresses appear both in the inclusion and the matrix. Hill 17] considered the

problem of spherical shell under uniform pressure on its cavity surface under the assumptions of finite

plastic strains.

We assume that the internal boundary of the matrix (a sphere of radius a) is under a gradual

increasing pressure p. At first at moderate pressure p, the matrix behaves like an elastic material.

Introducing spherial polar co-ordinates (r, 0, ) and the corresponding displacement components (u, v,

w), for radial symmetry of deformation we suppose
u=u(r), v=0 and w=0 (2.1)

In absence of body force, the only non-vanishing equation of equilibrium satisfied by the displacement

component u is

+-- =o. (2.

The solution of the above differential equation is
B

u Ar + r2,
(2.3)

where A and B are constants. The stress components are, therefore,
B

o" (3;1. + 2) 4p -y, (2.4ab)

B
fro=o, =(3) + 2/)+ 2/7.

According to Hencky and yon Mises, the yielding commences when the maximum of Io’ o’,1 reaches a

critical value v, where v is a material constant.
B

Now o’ rr, 6t is maximum when r a. Therefore, the yielding commences at r a and

the corresponding pressure P0 is determined by the following conditions

I ][ar],=a =--P0’ [r]__ =-p,, 6P7 7 (2.5abc)

where P0 >> P,.

Thus, yielding begins when
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Po 7’ + p (2.6)

and the corresponding displacement at the inner boundary is given by

2( a_/ a
U (a) - ?’a 3, + 2,u b-7

+
3& + 2m

(2.7)

With increasing pressure a plastic region spreads into the shell. The plastic boundary be a spherical

surface, its radius at any moment is denoted by c.

The stresses and displacement in the elastic region

(b / (a3 /3-1 r-
o’, =-A +B --1,

c < ?’ < b are still of the foma

cro=O’=A +1 -B +1 (2.8abc)

b -u=At
3r+2/ r+4// -B r+3z+2// 4//

in the region c < r < b.

We must consider the plastic solid in the region a < r < c
0o’, 2

+ 7(err tro) 0

subject to the yields condition tro- o’, ?’.
Solving the differential equation and using the condition of continuity of the normal stress at the elasto-

plastic interface r c, we have

or, _2?’logC 2( c3)r- 1- -p,

o=,=?’_2rlogC_ 2 (c33)r --?’ 1- -p,

(2.10ab)

If o- -p, at r a, then

p 2 ?’log
c
+ 1- + p[

a
(2.11)

From the condition in the plastic region

e + 2eoo -E2 v (O’ + 20"o)
where v and E are the Poisson’s ratio and Young’s modulus respectively, and the condition of continuity

of displacement at the interface, the radial displacement u in the plastic region a < r < c is

_rr ) [ c-lc3 1]27"c .41.tc3_+3_Kb c 27’(1 2v)
log- --3-+ ru=

3K b, 12,u -3"+-3"+ r E r 3 -P" (2.12)

The displacement at inner boundary is

I( ) ] [c-1c31] a27’c3 41.tc3+3Kb lc 27’(1-2V) log-- ff-+ a-p,u(a)=- Lt i -fi ’-’’+ a E a 7
We know that the radial displacement of the inclusion isa(8- e), and

a
and therefore pl 3K’(- e)u’(a) p 3K-

(2.13)

Now by using the condition of continuity of normal stress at the inclusion and matrix, we get

3K’(8 e) 2?’logC + 1- + (2.14)



The displacement of the inner boundary of the mau’x is a which by equation (2.13) is

ae c-
3K ]2kt b75-3 -5 +

a E
log +

3 3-5- (2.15)

Therefore

= Y C3
(1- v) (2.16)

The relation tween e and is given by

-+--- P (2.17)
a 3 3 3K"

The material in the region a g r g c is under elasto-plastic strain and satisifes the work-hardening
conditions. If we define e;, e; as the radial and tangential elastic sains, e, e as the radial and

tangential plastic strains and e,eo as the coesponding quantities of total sain and if u the radial

displacement, then we have the following relations

e e + e, e e; + e (2.18)
Ou ue , e =-r (2.19)

Ee 2Vo, Ee (1 V) V (2.20)

It is customa to assume that the plastic sain satisfies the incompressibility condition

e + 2e 0. (2.21)

Then the following compressibility can derived by using the equations (2.18) (2.21)

+2 0r
+ (2.22)

where K is the bulk modulus.

The elasto-plastic material safifies the following equilibrium equation
O 2

a, =7(a a’) (2.23)

The sess-sn ce for a work-hdening material in uni-axial compression is of the fo (s Hill

[J])

r + H(e) (2.24)
where , e are compressive sess and strain (both ten as positive), T the initial yield sss, H is e
degree of hardening expressed as a function of total strain. Evidently, in radially symmeic

deformations, y element of material is subject to a uni-axi, radial compressive sss state- together with a hy&ostatic tensile stress a. Th latter sess, by itself, produces a posive

isotopic, elastic sain of amount {(1- 2v)a} / E. Remembering the sign convention for 8 d e, e
appropfia general yield criterion is

o-, y+H{-e,+ (1- 2v)}E (2.25)

If ere is no Bauschinger effect, then H(e)=-H(-e), i.e., H (e) is an odd function of strn. Thus e
gener yield criterion for a work-hdening matefi is

fro ff + H -e + 1 (2.26)
E

In case of line work-hardening, H is a linear function of total sain and an analytical discussion is

possible. In such a case the rate of work-hdening is constant and we suppose the yield cri:eNen as

+ffo (2.27)



where H’(e)= E, gradient of the stress-strain curve in the plastic range, supposed constant. Solving

(2.22) and (2.27), we find

cr o’ (1- E, 3

(2.28ab)

Eliminating the stresses o’ and 0" between the equations (2.23) and (2.28ab) we obtain the following

ordinary differential equation for u.

d (d--r 27u ) 6y(1--/1
+ (2.29)

dr (3K + E,) r

The solution of the differential equation (2.29) is

U A,r ++r ?’
3K + E,

r(31ogr- 1) (2.30)

where A and B are arbitrary constants. Therefore, with the help of boundary conditions (2.5abc) and

the continuity condition, the stress components and displacement can be obtained from (2.30) and

(2.28ab) in the plastic region a _< r < c and they are

2y(1-----)log(_)3 4?’ E,(1-v)+4’ E,(1-v)
O’= 3(1+3__) 3 E(I+-) 3 E(I+E__)() -Pl,

1-v ](C3r3 c3a c3 Pl

+)
log 2,

+J 5 )+ 2

-_v 3KE(b-c)-E’(Ec+ 3Kb) +(1-@)log r+

E(I+)"=-( E(ll +) 3KEb

::[3bc(4-3K)(1-5){4E,r+9Ka(1-5)}],
and

(2.31)

where
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q =9Ka 1--- 12Kb3(E,-31a)+121uc’(E, +3K)]-4E,[3Kb(_K+411)]. (2.32)

Therefore, the displacement at the internal boundary of the matrix is

L 3 + 1+ logTa

)’(1E(1 + _)-v)(1- E--)c3
a

P" [ab3c3(4 3K)(1- ){4E,a + 9Ka(Iq
(2.33)

It is noted that this displacement induces the initial elastic part of the displacements.
We consider the inclusion which is under a normal pressure p on its external boundary and is

therefore

< -p,, a; -p,, r;o o.
It is not very difficult to mark with the help of the yield criteria of Tresca 11 that the material of the

inclusion never yields and it is always in a state of elastic deformation. The displacement at the surface

of the inclusion is given by

u’(a)= ap( (2.34)
3K’

By using the condition of continuity of normal stress at the inclusion and matrix boundary, we get
E

(_) 4?’ E,(I-v)c3K’(d;-e)= 21’ 1---- l+31og + E, aE, 3 E(1 + _3__)3
3K

-2’cA+-b
(2.35)

The displacement of the inner boundary of the matrix will be ae, which by equation (2.33) is

=-(--3 1--2V [3KE(b3-c3)-E,(Ec3+3Kb3) (+1--/logC3]aEt )1+-

P[g663c3(4-3K)(1-){4E,a+9Ka(1-)}]E 1+
(2.36)

Solving for d; with the aid of equations (2.35) and (2.36), we obtain
-v) c3[1+E,( 4

(2.37)

If the bulk modulus of the matrix and the inclusion are same, then

t y(1- v)c’ p, bc3(4u 3K’)(E,- 9K’)
E a 3K’ q

(2.38)

where
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q 12a3(9K’- E,)[K’b’(E,- 3)+ lIc’(E, + 3K’)]- 12E,K’b(3. + 2//)
This result is essentially the same if the work-hardening effect of the plastic material is altogether

absent.

Now for the elasto-plastic solids of work-hardening material, the relation between e and t is

gven by

27 1- E,

() --(l+31og.) 41,’ E,(1-v) (.):+2Y(c_)e=-
I+--3KE’ 9KE(I+) 9K,b)

q

For a picularly plastic material, e corresponding result is given by

e log- + (2.40)
3Kk a 3 3

Comping the above results it follows that the relation between e and for the case of same inclusion

and the maNx material depends

(i) on Poisson’s ratio v, Young’s modulus E, bulk modulus K’ of the inclusion and on the yield sss in

case of perfectly plastic solid, and (ii) on the rate of constant work-hdening factor E, sides

qutities already mentioned in (i).

The equilibrium pressure of the inclusion in the present case is given by (2.31), which may

comp to uation (2.11) for the perfectly plastic case.

Another impoant point in the present case is the jump in the hoop sess on e surface

inclusion given by

31-@ Yc 3p,-+ + (2.41)
a+

This result is independent of and e but depends on the constant te of work-hdening factor

In e case cf perfectly plastic solids the jump in the hoop sess is % the yield stss, which can

duced om the above result by putting E, 0.

All oer impoant results involved in (2.31), (2.33) and (2.39) are found to agree with

coesponding results for pefftly plastic solids given by Bhgava 12], if we put b , p, 0 d

E, 0, in the above uations.
3. CIRCULAR INCLUSION UNDER CONDIONS OFPLA SAIN

Bhargava 12] discussed the problem of circular inclusion in an elasto-plastic material of infinite

extent. We consdier here circular cylindrical inclusion in a finite elasto-plastic material with effects of
work-hardening. The cylinder is under constant external pressure p,. As the problem of circular

cylindrical inclusion even under the conditions of the plane strain is much more difficult than that of

spherical inclusion, we suppose v for compressible material. This assumption greatly simplifies the
2

solution of the problem.
Introducing the cylindrical coordinates (r,O,z) and the corresponding displacements (u, v, w),

we assume for the present problem

u=u(r), v w O"



Proceeding in a similar manner as the case of spherical inclusion, we suppose that the internal circular

boundary of the matrix is under a pressure p within the elastic limit. Our discussion is confined to the

scope of the infinite theory of strain.

The only equation of equilibrium under no body force is

+ =0 (3.1
dr k, dr

and hence the solution is
D

u=Cr+-- (3.2)
t"

where C and D arc two arbitrary constants.

The yielding commences when the maximum of Io’o o’rl attains a critical value ?, where ], is a

material constant.
D

Now o’o o, 4// is maximum when ," a. Therefore the yielding begins at r a and the

corresponding pressure Po is determined by the following conditions

[(Tr]r=a =--Po, [(Tr]r=o=--Pe
and

D
7 4//-y (3.4)

where P0 >> Pe
Therefore yieldings commences when

p0 - +p (3.5)

and at this stage the displacement of the internal boundary is

Uo(a)=[b a -] a2
(A. +//)

+
2( +//)

pe (3.6)

For an increasing pressure beyond 1--- + p, the plastic zone is developed in the matrix, and if c

be the radius of elasto-plastic interface, then proceeding as in the case of spherical inclusion under

external pressure, the elastic stresses and displacement in the matrix beyond c are given by

(r,, c 7’ + p, o 2p,- p,, a -c v(o- + o-o) v (3.7abe)

and

"=
4 b( +//)

r + 7 2(. +//)
p (3.8)

The material in the region a _<r _< c is elasto-plastic and satisfies the work-hardening condition.

Presenting an analysis similar to that of a spherical inclusion, the equilibrium equation is

0o’r--- + (o’
r

’) 0 (3.9)

and the yield criterion of linear work-hardening material is

The plastic material satisfies the compressibility equation
Ou u

Or r

(3.10)

(3.11)



Since the displacement component u is continuous on the elasto-plastic interface r=c, then it is given by

4 b"(& +p)c+ (3.12)
r 2(; + p)

Eliminating u and o" from equations (3.9), (3.10) and (3.12), we obtain

rr -r- 1- + E, -c c + E, (3.13)b2()+p) c jr 2(A. +p),"3

Solving the above differential equation for the normal stress and using the continuity condition on the

elasto-plastic interface r=c we have

o’, 7’ log- +
r b2(2 +

2

=

(3.14ab)

2
7’ 1- 1-2log +cZ E,

-C b2(+,f/)c+v + V- -P" 4(;/.t)+1

given by

-Pl o -Pl z -2 VPN1 (3.17ab)
u’ (1 + v’)(1- 2v’)-p (3.18)
r E’

where E" and v" are theYoung’s modulus and Poisson’s ratio respectively.

According to Bhargava [9] the inclusion never yields for infinitesimal strains. The circular

inclusion of radius of radius a spontaneously undergoes dimensional change to a circle of radius

a(1 + ) in the absence of matrix and attains the radius a(1 + e), when it is in equilibrium in the presence

of the matrix. Presenting an analysis similar to that of a spherical inclusion, we obtain

]1 Pe
:=4 kb2(;I,+//)c+- a 2(+//)

(1 + V’)(1- 2 v’)
E"

(3.19)

(3.20)

where Pl is given by (3.16).

These results (3.15) (3.20) for elasto-plastic solids with work-hardening effects are in good agreement
with the corresponding results of a perfectly plastic solid if we put 1), 0 and E, 0 in the above

results.

The pressure Pl at the internal boundary of the matrix is

" @_) 7’ a2[ff_ { l}(1 1)(1 cl__/]p,:il- 7’log- b2(X+/-----c’+-- 5---- + -+ F E,c

As regds the inclusion, if it is under unifo pressure p, the pfincipN stress and displacement field is



The jump in the hoop stress as we cross the common boundary of the inclusion and the matrix is

60 o0 1- +
9( + flc + p, (3.21)

If E, O, this result reduces to that of perfectly elastic solid. It is important to point out that in

case of perfectly plastic solid the hoop suess is independent of the external boundary of the matrix.

Finally, all the results obtained in the above analysis depend on the constant rate of work-

hardening factor E, which plays an important role in plasticity.
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