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ABSTRACT. Sol.tions ar,’ obtained of boundary value problems for L,,+

f(x, Loy L,_.y), satisfying L,y(O)= L,,_y(l) O, 0 < < n- 2, where L, denotes the ’
(lasiderivative, and where f(.r,y y,_l) has singularities at y, O, < < n- 1.
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1. INTRODUCTION.

We first define the quasiderivative operators, L,, 0 < <., inductively by,

l<i<n,

where p,(x) C’"-’)([0,1], (0, o)), 0 < < n, and we assume p._,(x)= on [0, 1]. We will be concerned

with solutions of boundary value problems for the quasi-differential equation,

L,y + f(x, Loy, Ly L,_y) 0, (1.1)

satisfying the boundary conditions,

L,y(O) 0,0 _< _< n- 2, and L,_y(1) 0, (1.2)

where f(x, yi,...,y,_l) 0 has singularities at y, 0, g < n- 1. For notation, we let

and

and we assume throughou.t that,

(5,= inf p,(x),O<i<n,
O<x<l

A, sup p,(x), 0 < < n,
O<x<l
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(A) f(z, yt !/,,-1) ((). (0. )"-I (0, vc) is contiliuous;

(!) f(.r.!/l !/,,_) s (l(,cl(,,si y,. for ea(l

y,,),

_
n- 1"

((’) IS f(x,Y y,,_)dx < . for each fixed (y y,,_);

(1)) lira f(x,y y,,_)= + uniformlvonconpacl subsctsof(0,1)x(0,)’’-. <<n- 1"

(E) li f(z.g 9,,_)- 0 uiformlyon copacl subsels of (0.1) x (0.)’’-e - 1.

We observe that, f y is a solulion of (1.1), lhe by (A), L,,y < 0, so that L,,_y is a concave function.

The singular boundary value problem 1.1 ), (1.2) generalizes in some sense the second order nonlinear

singular problems considered by Bobisud [1], Bobisud and Lee [2], Do and Lee [3], Garner and Shivji [4],

O’Regan [51, Tineo [61, and Wang [7]-[8]. Among those works, [1], [4], and [8] used singular boundary value

problems to nodel difl’usio prollems arising in physiology and physics, while in [5]. singular problems

included as special cases the Tho,nas-Fermi and l,nden-Fowler equations. Moreover. i,, [1], [2], [3], [5],

[6], and [7]- [8], a pr,om bounds are established on solutions, and the,, Schauder degr or Granas

topological transversality applications yield solutions of the singular boundary value problems. Others

have also used these metlod (in the ca.se p,(z) 1,0 n, so tha, L, ), tbr ingular boundary

value problems, with the paper by Eloe and ltenderson [9] containing many references to those works.

Our tnotivation for the techniques used in obtaining solutions of (1.1), (1.2) are the works by [10] and

[], followed ,y t, pp,’ by :oe ,,d H,,d,o,, [e] ,,d ,,a.,-so,, ,,a w,, It3]. ’rhe arguments

involve concavity properties, an iterative technique, and a fixed point theorem due to [ll] for mappings

that are decreasing with respect to a cone in a Banach space. In Section 2, we state some properties of a

cone in a Banach space, followed by the fixed point theorem. In Section 3, we construct a suitable cone

and define a sequence of modifications of f, so that none of these modifications have the singularities

of f. For this sequence, we construct a sequence of operators, each of which satisfies the hypotheses of

the fixed point theorem, hence obtMning a sequence of iterates in the cone. The sequence is shown to

converge to a solution of (1.1), (1.2) in the cone.

2. SOME PRELIMINARIES.

The following definitions and properties of cones in a Banach space can be found in Amann’s [14]

treatise.

Let B be a Banach space, and h" a closed, nonempty subset of B. h" is a cone provided (i) au+v K,

for all u,t’ K and all a,/3 _> 0. and (ii) u.-u It" imply u 0. Given acone It’, a partial order,

_<, is induced o /3 by x < y, for x,y B, iff y-x It’. (We may sometimes write x < y (wrt

K).) If a,y /3 with x y, let {x,y} denote the closed order nterval between x and y given by

(x,y) {z G ,8 z _< .<_ y}. A cone K is normal in B provided there exists a i > 0 such that

[[ea + e[[ >_ 6, for all ea,’e,e e h" with [[e[[- [[%[[- 1.
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We re.hark lhal. if h" is a or,l cone in B. lhen cl)s,d order i.lervals are or bounded.

We now slate a fixed poittt theoret d,e to (;atica. Oliker, a.d W,lt.a [I 1] for operators lhat are

lecreasing ilh respecl lo a co.e.

THEOREM 1. Lit I a H.nach .act. K a uormal cont ,n L. E C_ A ..uch that. ,f x,y C E wth

x <_ !t, then (x. y) C_ E, aud hi 7"" !’.’-- h" & a couttnuous mapping that is dctrasiug w,th reswct to h’,

,rid which is compac! on .ny clo.,i orth r itt r’al cont.tncd in E. Suppos( thcrc exists xo E such that

7 ’-’.re, T(I’xo) ts dJintd...d both 7"Xo ami 7’2o art ordt.r comparable to Xo. If eithcr. () Tzo <_ xo

..d 7’’.to <_ x, or () x, <_ "l’x, a.d .r, <_ T’.ro, thtn T has fiJ’td lfint i E.

3. SOLUTIONS OF (1.1), (1.2).

In tills section, we will apply Theorem to a sequence of operators that are decreasing with respect

o an approl)riate cone. We tlwn obtain a sequence of iterates from these fixed points which converges

1o a solution of (1.1), (1.2). Concavity of the (n 2)’’a quasiderivative of a solution plays a role in this

construction.

Let the Banach space B C[’-’)[O, 1] with norm

IIII mx{ILoyl IL.-.yloo },

where I" 1oo denotes the supremum norm, and let

It’= {y 13 L,y(x) > 0 on [0,1],0 _< < n- 2}.

K is a normal cone in/3. We also note that, if u, v fi/3 and u < v (wrt K), then

L,u(x) < L,v(x) on [0, 1], 0 g < n- 2.

In addition, we will have need of the sign of the Green’s function, G(x,s), for the problem,

L,,y O, L,y(O) 0, 0 g < n 2, and L,,_ty(1) 0. (3.1)

Eloe [15] has proved

(L,),:G(x,s) > 0on (0,1) x (0, 1), 0 < < n 2. (3.2)

By a solution, y, of (1.1), (1.2), we mean y C(")(0, 1)f3 C("-l)[0, 1], y satisfies (1.1) on (0,1), y

satisfies (1.2), and L,y(x) > 0 on (0, 1), 0 < < n- 2. For such, we seek a fixed point of the integral

operator,

But because of the singularities in f given by (D), we cannot define T on all of the cone K. We next let

"[0, 11 [0, c) be the solution of

L.u O, (3.3)
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for eacl 0 > O,

note lhal, for 0 > O, a,d 0 _< < , 2.

HII(]

L,u(Ol:O. 0(__<,-2,

,u(O) 1,

L, r.i .r

dr dr.., dr,
p,+,( r, )--. p,,_..,( r._, )p,,_, (r)

(3

L._,9(.r) 0 on [0.1],

so lat 9 ( h’, al(! in fact L,9(x) > 0 on (0, 1], 0 5 n 2.

Assume for the remainder of t]w paper.

(1") For each 0 > O. [ f(.,Log,(x),L,g,(x) L,,_g(x))dx < .
Finally, we define D h" by

D= {B] there exits0()>0such thatg (wrt K)},

and define T" D h" by

It follows fi’om (A)- (F) and properties of G(x,s) that, if e D, then T
satisfies (1.2), L,(T)(x) > 0 and increasing on (0, 1], 0 n 2, L_(T) is eoneeve on [0,1],

and that r D. On the other hand, if C(0, 1)n C("-[0,1] is a solution of (1.1), (1.2), with

,(x) > 0 on (0,1], 0 n-2, it again follows from the concavity of

_
thet D. Consequently,

D is a solution of (1.1), (1.2) iff T .
Our first result of this section gives a priori bounds on L_, for all solutions of (1.1), (1.2), that

belong to D.

THEOREM 2. Assume that (A)-(F) are satisfied. Then, the exists an R > 0 such that JL,_]

R, for all solutions of (1.1), (1.2), that long to D.

PROOF. Assume the conclusion to be false. Then, there is a sequence {t} D of solutions of

(1.1), (1.2). such that Jim [L,,_t[ . We may assume that, for each 1,

IL,-=tl IL,-t+l. (3.5)

From the equation (1.1), L,_t(x) > 0 and decreasing on [0,1), and from (1.2), L,t(x) > 0 and

increasing on (0.1], 0 n- 2. It follows that, for each ,
0 L,_2t(1)= IL.-2tl IL,,-t+,l L._t+,(1). (3.6)
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In atltlilion, the concavilv and posilivity of ..,t imply lhat

L,,_..,t( )) d. L,,_ 7t( )- x < L._.t(x), 0 < x < 1.
p,,_ (.)

So, from the monoto,it’ity in (3.5) and (3.6), if we set/9 L,,_.,(1), then

L,,_..,:/,(x) <_ L,,__t(z) on [0,],: _> I.

From the conditions satisfio(l l)y g and t at x 0, upon multiplying successively by (p,(x))-t and

integrating, we ol)tain

.q<t(wrt K), for nile> 1.

Now, set

0 < M sup (L_)G(z,s).
[0,]xt0.H

Then (B) and (F) yield that, for 0 < x < and/ > 1,

L,,_..,qat(z) L,,_.(Tpt)(x)

(L,,_.)a(x,s)f(s, Lo:t(s)

<_ M I(,o(s),...,_,.e()Id

for some 0 < N < o. But 0 < x _< and t > were arbitrary. So

IL.-2loo _< N, for all t > 1,

which contradicts lim L,_t Ioo= . The proof is complete.

COROLLARY. Assume (A)-(F) are satisfied. Then there exists an > 0 such that 0 <_ L,(x) _<

,,_ 8,+, (n TZ) on [0,1], for 0 g g n 2, and I111 sup
0sis,- ,- ,+ ’ for all

solutions of (1.1), (1.2) that long to D. In rticular, (n- 2)x"- (wrt K), for all solutions

: O 4(1.1), (1.2).

Next, for each _> 1, let bt "[0,1] [0, cx) be defined by

( a(,,II(,, ,)e.

With assumptions (A)- (E), we have

0 < L,bt+(x) < Lbt(x) on(0,1), 0 < < n 2.

Furthermore,

lin LiPt(x) 0 uniformly on [0, 1],0 < _< n 2.

Now, define a sequence of functions, ft(x,y y,,_) (0,1) [0, o)"- (0, oo) by

f,(z, y, y,,_, f(x, max{y,,Lob,(x)} ,max{y,,_,, L_b,(x)}).
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For f > 1, ft is continuous and satisfies (B). Also, from (B), we have, for each { > 1,

1,I1 (|

f,(x.y, y,_) <_ f(x, vt ,j,,_) on (0,1) x (0, .)’’-.

ft(x,y, y,_) < f(x, Lo$t(x) L,,_.g:t(z)) on (0,1) (0, c)"-’

THEOREM 3. Assume that conditions (A)-(F) are satisfied. Then the Mundary value pwblem

(1.1), (1.2) has a solut,on, y, such that L,y(z) > 0 on (0,1), 0 n- 2.

PROOF. We begin by defining a sequence of compact mappings Tt K K by

Tt:(x) G(x,s)ft(s, Lo:(S) L,,_:(s))ds,O x 1,: e K.

For g and e K, L,_(Tt) > 0 is concave on (0, 1), Tt satisfies the boundary conditions (1.2),

and from (L,)G(x,s) > 0, 0 n- 2, we have L,(T) > 0 and increasing on (0,1), 0 g g n- 2.

Since each ft satisfies (B), it follows that Tt is decreasing with respect to the cone K, for each 1.

Also, 0 Tt(0) (wrt K) and 0 T(0) (wrt K), and so by Theorem 1, for each , there ests a t e K

such that Ttt t. From our observations above,

By essentially the same arguments in Threm 2, it follows that there is an R > 0 such that, for

each 1,

[Ln-2tl R and IItl[ ,
where is given in the Coronary.

Our next claim is that there efists k > 0 such that k ]L,-et], all 1. Assume the claim is fMse.

Then psing to a subsequence and relabeling, we have without loss of generality that lim IL,_t] 0,

which implies, along with the boundary conditions (1.2),

lim L,t(z) 0 uniformly on [0,1], 0 n- 2. (3.7)

Let 0 < < be fixed and let

By (D), there ests y > 0 such that, if$z 1-$and0<y,<,for lgin-l, then

2
(,,...,,_) >

m

From (3.7), there exits {o _> such that, for _> Q,

0 < IL,:t(x)l < u/2, 0 < < 1, 0 < < n- 2.

Also, for some {1 > {0 it follows that, if { _> {1,

0 < IL,t(x)l < ,/2, 0 < x < 1,0 < < , 2.
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So, forg>t? an(lb <.r < l-a.

l.,,_-_,Cx) L....2(;Cx.s)ftCs. LotCs) 2tCs))ds
1-

J G(z,.s)ft(s, Lot(s)

2 - f(, /2 /2)

>1.

This is a contradiction to (3.fi). Titus, there is a k > 0 such that k Ia,,-,l, for all . With

and applying (1.2), we obtain

L,go(x) <_ L,t(x) on [0, 1], 0 < < n- 2, _> 1.

We have

or, in particular,

go < t < z"-"(wrt K),g > 1,
(. 2)!

k
{,} C_ <go,

(n 2)!’x"-’> C_ D.

Vhen restricted to the closed order interval, <9, (n- 2)i z"-=>’ T is a compact mapping. So, there is a

subscquence of {Tt}, which we relabel as the original sequence, which converges to solne o" K; that

k
To complete the proof, we show that lIThe t]l 0, as g oo. With 0 , let > 0 be given,

and let

P= max sup L,G(x,s)}.
0<,<,-2 [0,]x[0,]

The integrability condition (F) and the absolute continuity of the integral imply there exists 0 < /i <

such that

2P[ f(s, Loga(s) L._2g,(s))ds +

f(s, Logo(s) ,L,,_go(s))ds] < .
-6

Also, there exists go such that, for g _> eo,

L,t(x) <_ L,ga(x) <_ L,t(x) on [8,1 ti],0 _< _< n 2.

Observe also that ft(s, Locpt(s) L,_t(s)) f(s, Lot(s) L,_t(s)), for 6 g s g 1- and

g_>go. Thus, for0gi_<n-2, g>_g0, and0_<x_< 1,

+ f(s, Lot(s),... ,L,,_2t(s))ds]

2P[ f(s, Log(s),...,L,,_2g(s))ds

+ f(s, Logo(s)
-6

<
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Therefore,

follows, in turn, that lin liar ’11 O, so that

" (,
(,,_ z)?a. c_ D,

a [I d

and lie proof is (’Ollit)lete.
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