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Abstract In ths note show that under certain restr,ctions aonnegatve regular summabllt
matrix T, the space of T-stat,stcally convergent sequences cannot be endowed wth locally convex

FK topology.
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1. INTRODUCTION

Statistical convergence, introduced by Fast [5], has most recently been studied by Fridy and

Orhan [7] [8], and Kolk [9], among others [3] [4] [6] [11]. In [3], it is shown that the space of

statistically convergent sequences cannot be endowed with a locally convex FK topology. In this

note, we establish that under certain restrictions on a nonnegative regular summability matrix T,
the space of T-statistically convergent sequences cannot be endowed with a locally convex FK
topology.
An infinite matrix T (t,,) is nonnegatze if t, > 0 for all n and k, and regular if. for a

convergent sequence x with limit l, limn =1 t,,kx I. Throu_ghout this note T denotes a

nonnegative regular matrix. We say that the rows of T spread if lim, max t,,t, 0. We let

denote the space of all real valued sequences, denote the finitely nonzero elements of w and N

denote the positive integers. For e > 0 and a scalar l, we let A,t k :[xt l[ < e}. A sequence

z w is T-sta.tistically con’vergertt to provided that for all e > 0,

(where XA is the characteristic function of A). The space of T-statistically convergent sequences

is denoted by ST. Note that for T C1, the Cesro matrix, this definition concurs with the

definition of statistical convergence [6].
2. THE MAIN RESULT

A common theme in summability is the quest for "soft" methods to apply to classical type

problems. An example of this is the "FK program," in which a summability space is given at, F/f

topology ([13], pg. 54). An FIr space X is a subspace of,: with a complete locally convex Frdchet

topology such that the inclusion map from X into w is continuous [13]. Our result shows that we

cannot apply the FK-program to T-statistical convergence and improves Theorem 3.3 of [3:.
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THEOREM 1. For a nonnegative regular summability matrix T whose rows spread, the space

of T-statistically convergent sequences cannot be endowed with a locally convex FK topology.

The proof of this theorem depends upon the following result of Bennett and Kalton [2].

THEOREM 2. Let S be a dense subspace ofT. Then the following are equivalent:

1) S is barrelled.

2) If E is a locally convex FK space that contains S, then E w.

Note that the above statement is a restricted version of the result in [2], and an exposition can

be found in ([12], pg. 253).

The proof of the main result follows that of Theorem 3.3 in [3].

PROOF OF THEOREM 1"

We show that ST is a dense barrelled subspace of w. Recall that ST is barrelled if and only

if every a( ST)-bounded subset of is a(,w)-bounded ([12], pg.248). Thus, to show ST is

barrelled it suffices to show that if E is not a(,w)-bounded, then E is not a(,ST)-bounded.
We may assume that E is a(, )-bounded, since otherwise E is not a(, ST)-bounded and we

are done. Thus, there exists a sequence of integers < B > such that for z an element of E with

spt(z) {k e N" xt # 0} C_ {1,2,... ,n}, we have sup <,<n [z,[ is less than or equal to

,= z,s is infinite.Since E is not a(,w)-bounded, we can choose s in w such that supzeE

Note that for all z in E, we have ,n__ z,s,[ <_ nB supi_<, Is,[.
Select z Esuchthat [i=z, si[ > Bls[, and select j > 1 such tlhat zt 0 (sucha

j exists since E is not a(,w)-bounded and since Ixl < Ba). Assume that {z,z,... ,z"} and

j < j < < j,, have been chosen so that z" 0 and j,, > max{k N k spt(zn-)}. Set

max{ 3,, max{k N" k .spt(x")}, and select x’+ such that

’z,"+’s,I > tBtsupls,l. (2.1)
--1

Now select jn+ such that < jn+ and x+,’+ - 0, and proceed inductively.

By [10], since the rows of T spread there is a subsequence < j,. > of < j, > such that

lim,, o= t,X{j,..,es}(k) 0 Since z’" 0 for all m, it is possible to construct a sequence

a (a) such that -o= cx" oo as m oo. Then we set

a if r j, for k 1,2
(2.2)z (z)

0 else.

Now, z is T-statistically convergent to 0 (because the non-zero entries of z occur on the subse-

quence < j. > and by the definition of T-statistical convergence). Note also that = x’z
oo= x,, a. Since the right hand side of this equation tends to infinity as m does, it follows

that E is not a(, ST)-bounded. Since C_ ST, ST is a dense barrelled subspace of w. Now. by

the result of Bennett and Kalton, we have that ST cannot be endowed with a locally convex FK

topology.

The following examples illustrate the necessity of the hypothesis that the rows of T spread.

Consider the identity matrix I (i,), where inn 1 and i, 0 for all k n. The space
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of/-statistically convergent sequences is the space of convergent sequences c, a well-known FK

space. For a less trivial example, consider the matrix T (t,) where tl 1, t 0 for k _> 2,

and forn> 2,

t,, : ifk=nork=n-1, (2.3)
0 else.

Note that the rows of T spread, and that this method is regular. In fact, T is stronger than

convergence since the sequence x =< (-1)" > has lira,, 0=1 tnz, 0. As in the case of the

identity matrix, the T-statistically convergent sequences are again the FK space c of convergent

sequences.

A consequence of this result is that we cannot employ the FK program when studying T-

statistical convergence for a matrix T whose rows spread. Instead, the Stone-ech compactification

of the integers has been used [4][1] as an avenue for "soft" methods for treating T-statistical

convergence of bounded sequences. This result also includes Corollary 4.4 of [9], where it is shown

that under certain restrictions, rt matrix B maps the space of T-statistically convergent sequences
into a sequence space Y if and only if B has at most finitely many non-zero columns which belong
to Y.
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