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ABSTRACT. In this paper we define the sequence spaces S€..(p), Sc(p) and Scy(p) and determine
the Kothe-Toeplitz duals of S¢..(p). We also obtain necessary and sufficient conditions for a matrix

A to map S€,(p) to €. and investigate some related problems.
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1. INTRODUCTION.

If {p,} is a sequence of strictly positive real numbers, then

0.p) = {x:sup | x, [P < o
k

ep) ={x:|x - 0[™~0 for some ¢}
c® ={x:|x [*-0.

For detailed discussion on these spaces we refer [1,4,5,6,7,8].
Recently Kizmaz [3] defined the following sequence spaces:
If Ax = (X,-X,,), then
) ={x={x):Axet }

cd) ={x=K}:Axech
ca) ={x=K}:Axec )
These spaces are Banach spaces with norm

Ixl, = x|+ Ax|,

Furthermore, since ¢.(A) is a Banach space with continuous co-ordinates (that is, k*x I, — 0
implies | x,"-x, | — 0 for each k € N, as n — ), it is a BK-space.

If X is a sequene space, we define [2]
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X*={a=(@):Y |ax]|<oeforeachxeX})
i1

XP ={a=(a):Y ax, is convergent for each x ¢ X };
k=1

X* and XP are called the a-(or Kéthe-Toeplitz) and B-(or generalized Koéthe-Toeplitz), dual spaces
of X respectively.

We now define some new sequence spaces. If Ax = x, - x.,, we define

Sep) ={x=):Axel (P}
Sep) ={x={&x}:Axecp)}

Se ={x="{t:Axec(p) !}

We observe that if x, = k(for all k € N) then x € S¢_(p) but x & €,(p).
PROPERTIES : (i) S¢.(p) and Sc(p) are paranormed spaces with the paranorm

g (x) = sup, | Ax, | 2™ where M = max (1, sup p,) if and only if 0 < inf p, < sup p, < «.
(ii) If p = {p.} is a bounded sequence, then Sc (p) is a paranormed space with the paranorm

g = sgplekl’*’“

The proof of these properties are similar to the proof given in [6, Th.1].

2. DUALS
THEOREM 1. Let p, > 0 for every k. Then
o © n
sLe) = N {y = y..>:):‘{ ) N""'} PARE }
N=1 =l | m=1
PROOF. We need to prove that (S€.(p))” is the set of all sequences y such that, for every

positive integer N,

f){iN"""} FPAREY

n=1 | m=1
If x € S€.(p), then by definition, |AX |™ is bounded, so that, for some N, [AX [P < N ; thus

|AX,| = N . So

2 2.1
x| < ENW"" 21

m=1

n
(by the relation X, = 3 AX,)

v=1
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Thus, if

Z.:{ Y N""‘} PARES @2

n=1 | m=1

holds, then

Y Ixgll <
n=1

Hence, (2.2) is a sufficient condition for y € (S€.(p))~
1fp
N™

N E!

Conversely, if N is given we can define x € S€.(p) by x, =

B
"
-

so that(2.2) is necessary for y to be in (S¢,.(p))"
Now we raise the following question :

Is it true that (S¢.(p))” is the set of sequences y such that, for every positive integer N,
YaNP |y <=2 23)
n=1

In other words, is it true that

(SLP)" = ﬂ{ y = @)X nN™ |y |<w }?
n=1

N=1
It does not follow at once from Theorem 1 that this conjecture is false, since it is not obvious that
the assertion that (2.2) holds for all N is not equivalent to the assertion that (2.3) holds for all N.
Indeed, there are some sequences {p,} for which these assertions are equivalent. However, for
general {p,} they need not be equivalent. We give examples to show that
(A) Itis possible to choose {p,} such that there isay = {y,} for which (2.3) holds for all N, but
(2.2) does not. Thus (2.3) is not always sufficient.
(B) Itis possible to choose {p,} such that there is a y for which (2.2) holds for all n, but (2.3)
does not. Thus (2.3) is not always necessary.
EXAMPLE 1. Take

Por_,=1
{ e }k - (123,.)

szzllk
Then take
y = —_l—‘
e k=123,
Yo = 0

Since y,, = 0, it is only the odd terms which coatribute to (2.2) or (2.3). For these terms we take

P. = 1 and thus the sum on the left of (2.3) is

But for n = 2k-1, k = 2,
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an NP » NP2z = NK1,
m=1

Thus the sum on the left of (2.2) is greater than or equal to

hed k-1
YN -sifN>1
2 k¥

EXAMPLE 2. Take

1
p, = {log 1
1 (otherwise)

(m = 2"r=2,34,...)

Then take

-1; @ = 2r=234,.)
Yo = 2t
0  (otherwise)

In the sums (2.2), (2.3) all the terms vanish except for n = 2, r = 2,3,4,... So we need consider only

those terms. If n = 2', r = 2 then there are 2-(1-1) terms in the sum

y N'"= for which Py = 1 so that

m=1

r

Zn: N'/p, = @-G-1D)N + } Nbse

m=1 p=2

But N¥t# = p*tN 5o that for fixed N

Z’: Nt = E pl¥ = 0 (1N = o (29).

p=2 p=2

Thus, for fixed N, and n = 2" we have
Y N -0@

m=1
so that
= = p, -1
5 (5 x™ini-o[E L)<
n=1 \m=1 r=2 I
But
Ny =3 2 Neer L
xg %1 § 2 g2

“  legN
=y I (since NW8* = fl& Ny
=2 l’z

=owiflogN =1,
ie. forN =3,4,5, ...
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We now consider the second dual of (S¢.(p)) i.e.(S¢.(p))" .
Is it true that

sLoye- U |zse —L2l | <y
N=1 n Up
N m
)2

In other words, is it true that (S¢,(P))™ is the set of sequences z = {z,} which are such that, for

some N

z, =0 (E N""-] ? 24
m-1

In order to see that this conjecture is true, we shall first prove a lemma.
LEMMA 1. Suppose that, for each N, {a,™} is a sequence of positive numbers, and that,
for fixed n, a,™™ is non-decreasing in N. Let X denote the set of sequences {y,} which are such

that, for all N,

NI EARE 2.5)

n=1

Then X* is the set of all {z,} such that, for some N

z, = 0 @™ (2.6)

PROOF. The result that (2.6) is sufficient for z € X* is trivial; for, if (2.6) holds for
some N then since (2.5) holds for all N it holds for that particular N, whence

DI ANR R
n=1
The result that (2.6) is necessary is not so obvious. Suppose it is false that there is some N for

which (2.6) holds.
Then, for every N,

z(;) is unbounded.
a,

Hence, we can determine an increasing sequence {ny}of positive integers such that

———' Pow |z N2
anN(N)
Now definey = {y,} by
1
——— (n =n,, N=1,23,..)
2 ™)
Yo © N anN

0 otherwise
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Now given any fixed N we have for al M = N

1 1
y =
™ooM?2 anu(M) M? an“m)

(since a,"™ is non-decreasing for fixed n).
The terms in (2.5) for which n is not equal to n, for some M are 0; hence the contribution to (2.5)

of these terms with n = ny is less than or equal to

1

—_ < 00
MmN M?

Since there are only a finite number of terms with n < ny the series (2.6) converges. This holds

for every N; hence y € X.

But when n = ny we have |y,z, | 2 1 . Hence Y |y,z, | diverges so that z ¢ X*
n=1

The conjecture preceding Lemma 1 now follows from the result for (S€,, (p))* by taking

X = (S@.. (p))a, an(N) - E Nl/Pn
=1
3. MATRIX TRANSFORMATIONS "
In this section we find necessary and sufficient conditions for A € (S€.(p), €..). We need the

following lemma.
LEMMA 2. Let p, > 0 for every k. Then

N=2 k=1 m-=1

o - ({5 - (ak Pag v comege |2, | N7 < - |
k=1

Where R, =Y a,.

v=k

PROOF. Suppose that x € S¢..(p). Then there is an integer

N > max (1, sup |Axk|"‘) such that

n n y "
k;l &K = g; RAx, - R,, Z;Axk (3.1
where n € N,
Since

Y IR | 8% | s TR | N™ < o
k=1 k=1

it follows that

Y_ R,Ax, is absolutely convergent.
i1
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Also, by Corollary 2 [3], the convergence of

Z.:ak (E N "’-) implies that mR,. IE N'"= -0
k=1

m=1

Hence, it follows from (3.1) that

Z ax, is convergent for each x € S¢_(p).
k=1

This gives a € (S€,(p))~.
Conversely, suppose that a € (S¢.(p))’, then by definition, Y ax, is convergent for each
k-1
x € SU(p).

Since e = (1,1,1,.) € S¢(p) and x = E N""-} e St(p), ten E a, ad Ea [2 N""']

v=1 v=1 m=1

are convergent. By using Corollary 2 [3] we find that

k
lim RYul E Nl,p- = 0.

n-e m=1

Thus, we obtain from (3.1) that the series E R, Ax, converges for each x € S€.(p).
k=1

Note that x € S€,,(p) if and only if Ax € €,,(p). This implies that R = {R,} € (£.,(p))’. It now follows
from Theorem 2 [4] that

Y | R,| N"™ converges for all N > 1.
k-

We now find necessary and sufficient conditions for a matrix A to map S€.(p) to €.

THEOREM 2. Let p, > 0 for every k. Then A € (S€.(p), ¢.) if and only if

@ supIZank(EN”"-]|<ooN>1

n k=1 =1
(ii) ENIMIE am|]<oo,N>l.
n [k=1 v=k

PROOF. We first prove that these condltlons are necessary.
Suppose that A € (S¢.(p).¢.). Since x| E N* ) belongs to S€.(p), the condition (i)

m=1
holds. In order to see that (ii) is necessary we assume that for N > 1,

sy N IZE a,,|

n k=1

Let the matrix B be defined by B=(bnk)=(2 anv).
v=k
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Then it follows from Theorem 3 [4] that B &(¢.(p),f..). Hence, there is a sequence x € €,.(p) such

that sup [X, ™ =1 and ¥ b, x, * O(1).
k k=1
We now define the sequence y by

k
Yo=Y, x(keN),y, =0 Theny e Si(p)

v=1

and Y ayy, = Y b x * 0.
k=1 k=1

This contradicts that A € (S¢,(p),¢.). Thus, (ii) is necessary.
We now prove the sufficiency part of the theorem. Suppose that (i) and (ii) of the theorem
hold. Then A, € (S¢.(p))’ for each n € N.

Hence A (x) = Y a x, converges for each n € Nand for each x € S¢,(p). Following the argument
k=1

used in Lemma 2, we find that if x € S¢,(p) such that sup |Ax ™ < N, then
k

l;aﬂ}kl < ENlmlzanvl
=1

k=1 v=k

<sup (N | Y a || < =
o k=1 v=k

This proves that Ax € ¢.. Hence, the theorem is proved.
ACKNOWLEDGEMENT. The authors thank the refree for helpful suggestions.

REFERENCES
1. Choudhary, B. and Nanda, S., Functional Analysis with Applications, Wiley Eastern Limited,
1989.

2. Garling, D.G.H., The B - and y - duality of sequence spaces, Proc. Camb. Phil. Soc. 63
(1967), 963-981.

Kizmaz, H., On certrain sequence spaces, Canadain MAth. Bull. 24 (2) (1981), 169-176.

4. Lascarides, C.G., and Maddox, 1.J., Matrix transformations between some classes of
sequences, proc. Cambridge Phil. Soc. 68 (1970), 99-104.

Maddox, 1.J., Elements of Functional Analysis, Cambridge, 1970.

Maddox, I.J., Paranormed sequence sapces generated by infinite matrices, Proc. Camb. Phil.
Soc. 64 (1968), 335-340.

7. Maddox, 1.J., Spaces of strongly summable sequences. Quart J. Math. Oxford 18(2) (1967),
345-355.

8. Simons, S., The sequence spaces ¢(p,) and m(p,), Proc. London Math. Soc. (3) 15 (1965),
422-436.

9. Wilansky, A., Functional Analysis, Blaisdell, New York, 1964.

10. Zeller, K., Allgemeine Eigenschaften von Limitierunge Verfahren, Math. Z. 53 (1951), 463-
487.




