COMMON FIXED POINTS FOR NONEXPANSIVE AND NONEXPANSIVE TYPE FUZZY MAPPINGS

BYUNG SOO LEE Department of Mathematics, Kyungsung University Pusan, 608-736, KOREA

> DO SANG KIM Department of Applied Mathematics National Fisheries University of Pusan 608-737, KOREA

GUE MYUNG LEE and SUNG JIN CHO Department of National Sciences, Pusan National University of Technology Pusan, 608-739, KOREA

(Received March 23, 1993 and in revised form July 29,1994)

ABSTRACT. In this paper we define g-nonexpansive and g-nonexpansive type fuzzy mappings and prove common fixed point theorems for sequences of fuzzy mappings satisfying certain conditions on a Banach space. Thus we obtain fixed point theorems for nonexpansive type multi-valued mappings. **KEY WORDS AND PHRASES**: Star-shaped set, Opial's condition, weak convergence, Hausdorff metric, nonexpansive fuzzy mapping, nonexpansive type fuzzy mapping, fixed point, common fixed point.

1991 AMS SUBJECT CLASSIFICATION: 47H10, 54H25.

1. INTRODUCTION

Fixed point theorems for fuzzy mappings were obtained by Chang, Heilpern and others [1-5, 7, 9-13, 16]. Especially, Lee and Cho [10] showed that a sequence of fuzzy mappings with the condition (*) satisfies the condition (**), that a sequence with the condition (**) has a common fixed point and consequently that a sequence of fuzzy mappings with the condition (*) has a common fixed point. These results are fuzzy analogues of common fixed theorems for sequences of *g*-contractive and *g*-contractive type multi-valued mappings [8]. In [11] and [13] Lee et al. also obtained a common fixed point theorem for sequences of fuzzy mappings which generalize the results in [1] and [10] respectively.

In this paper we define g-nonexpansive and g-nonexpansive type fuzzy mappings and show that a sequence of fuzzy mappings with the condition (****), which are defined on a nonempty weakly compact star-shaped subset of a Banach space X satisfying Opial's condition, has a common fixed point. As corollaries, firstly we show that similar results are obtained for the conditions (*), (**) or (***). Secondly we obtain fixed point theorems for nonexpansive type fuzzy [respectively, compact-valued] mappings F [resp., f] from $K(\subset X)$ to W(K) [resp., 2^{K}]. Thirdly we show that similar results are obtained for nonexpansive fuzzy [respectively, compact-valued] mappings.

2. PRELIMINARIES

We review briefly some definitions and terminologies needed.

A fuzzy set A in a metric space X is a function with domain X and values in [0,1]. (In particular, if A is an ordinary (crisp) subset of X, its characteristic function χ_A is a fuzzy set with domain X and values {0,1}). Especially {x} is a fuzzy set with a membership function equal to a characteristic function of the set {x}. The α -level set of A, denoted by A_{α} , is defined by

$$A_{\alpha} = \{x : A(x) \ge \alpha\} \quad \text{if} \quad \alpha \in \{0, 1\}$$
$$A_{0} = \overline{\{x : A(x) > 0\}}$$

where \overline{B} denotes the closure of the (nonfuzzy) set B.

W(X) denotes the collection of all fuzzy sets A in X such that (i) A_{α} is compact in X for each $\alpha \in [0,1]$ and (ii) A_{1} is a nonempty subset of X. For $A, B \in W(X), A \subset B$ means $A(x) \leq B(x)$ for each $x \in X$.

Let A and B be two nonempty bounded subsets of a Banach space X. The Hausdorff distance between A and B is

$$d_{H}(A,B) = \max\left[\sup_{a \in A} \inf_{b \in B} ||a-b||, \sup_{b \in B} \inf_{a \in A} ||a-b||\right].$$

DEFINITION 2.1. Let $A, B \in W(X)$ and $\alpha \in [0,1]$. Then we define

$$D(A,B) = \sup d_H(A_\alpha, B_\alpha)$$

We note that D is a metric on W(X) such that $D(\lbrace x \rbrace, \lbrace y \rbrace) = ||x - y||$, where $x, y \in X$.

DEFINITION 2.2. Let X be an arbitrary set and Y be any metric space. F is called a fuzzy mapping iff F is a mapping from the set X into W(Y).

A fuzzy mapping F is a fuzzy subset on $X \times Y$ with a membership function F(x)(y). The function value F(x)(y) is the grade of membership of y in F(x). In case X = Y, F(x) is a function from X into [0,1]. Especially for a multi-valued mapping $f: X \to 2^X$, $\chi_{f(x)}$ is a function from X to {0,1}. Hence a fuzzy mapping $F: X \to W(X)$ is another extension of a multi-valued mapping $f: X \to 2^X$.

DEFINITION 2.3. Let g be a mapping from a Banach space $(X, \|\cdot\|)$ to itself. A fuzzy mapping $F: X \to W(X)$ is g-contractive [respectively, g-nonexpansive] if $D(F(x), F(y)) \le k \cdot \|g(x) - g(y)\|$ for all $x, y \in X$, for some fixed $k, 0 \le k < 1$ [resp., k = 1].

PROPOSITION 2.4 [9]. Let $(X, \|\cdot\|)$ be a Banach space, $F : X \to W(X)$ a fuzzy mapping and $x \in X$, then there exists $u_x \in X$ such that $\{u_x\} \subset F(x)$.

DEFINITION 2.5. Let g be a mapping from a Banach space $(X, \|\cdot\|)$ to itself. We call a fuzzy mapping $F: X \to W(X)$ g-contractive type [respectively, g-nonexpansive type] if for all $x \in X, \{u_x\} \subset F(x)$ there exists $\{v_y\} \subset F(y)$ for all $y \in X$ such that $D(\{u_x\}, \{v_y\}) \le k \cdot \|g(x) - g(y)\|$ for some fixed $k, 0 \le k < 1$ [resp., k = 1].

REMARK. When g is an identity, a g-contractive [respectively, g-contractive type, g-nonexpansive, g-nonexpansive type] fuzzy mapping F is said to be contractive [resp., contractive-type, nonexpansive, nonexpansive type].

LEMMA 2.6. Let $A, B \in W(X)$. Then for each $\{x\} \subset A$, there exists $\{y\} \subset B$ such that $D(\{x\}, \{y\}) \leq D(A, B)$.

PROOF. If $\{x\} \subset A$, then $x \in A_1$. By compactness of B_1 , we can choose a $y \in B_1$, i.e., $\{y\} \subset B$, such that $||x - y|| \le d_H(A_1, B_1)$. By the facts $D(\{x\}, \{y\}) = ||x - y||$ and $d_H(A_1, B_1) \le D(A, B)$, we have $D(\{x\}, \{y\}) \le D(A, B)$.

PROPOSITION 2.7. Let g be a mapping from a Banach space $(X, \|\cdot\|)$ to itself. If $F : X \to W(X)$ is a g-nonexpansive [respectively, g-contractive] fuzzy mapping, then F is g-nonexpansive type [resp., g-contractive type].

PROOF. It can be easily proved by Lemma 2.6.

3. COMMON FIXED POINTS FOR FUZZY MAPPINGS

For a mapping g of a Banach space X into itself and a sequence $(F_i)_{i=1}^{\infty}$ of fuzzy mappings of X into W(X) we consider the following conditions (*), (**), (***) and (****).

(*) there exists a constant K with $0 \le k < 1$ such that for each pair of fuzzy mappings $F_i, F_j: X \to W(X), D(F_i(x), F_j(y)) \le k \cdot ||g(x) - g(y)||$ for all $x, y \in X$.

(**) there exists a constant k with $0 \le k < 1$ such that for each pair of fuzzy mappings $F_i, F_j : X \to W(X)$ and for any $x \in X, \{u_x\} \subset F_i(x)$ implies that there is $\{v_x\} \subset F_j(y)$ for all $y \in X$ with $D(\{u_x\}, \{v_y\}) \le k \cdot ||g(x) - g(y)||$.

(***) for each pair of fuzzy mappings $F_i, F_j : X \to W(X), D(F_i(x), F_j(y)) \le ||g(x) - g(y)||$ for all $x, y \in X$.

(****) for each pair of fuzzy mappings $F_i, F_j : X \to W(X)$, and for any $x \in X, \{u_x\} \subset F_i(x)$ implies that there is $\{v_y\} \subset F_j(y)$ for all $y \in X$ with $D(\{u_x\}, \{v_y\}) \le ||g(x) - g(y)||$.

It is easily proved that the condition (*) [respectively, (***)] implies the condition (**) [resp., (****)] by Lemma 2.6, but the following example shows that the converses do not hold in general.

EXAMPLE 3.1. Let g be an identity mapping from a Euclidean metric space $([0, \infty), |\cdot|)$ to itself. Let $(F_i)_{i=1}^{\infty}$ be a sequence of fuzzy mappings from $[0, \infty)$ into $W([0, \infty))$, where $F_i(x) : [0, \infty) \to [0, 1]$ is defined as follows;

if
$$x = 0$$
, $F_i(x)(z) = \begin{cases} 1, & z = 0, \\ 0, & z \neq 0, \end{cases}$
otherwise, $F_i(x)(z) = \begin{cases} 1, & 0 \le z \le x/2, \\ 1/2, & x/2 < z \le ix, \\ 0, & z > ix. \end{cases}$

Then the sequence $(F_i)_{i=1}^{\infty}$ satisfies the condition (****), but does not satisfy the condition (***).

In this section we show that a sequence of fuzzy mappings with the condition (****), which are defined on a nonempty weakly compact star-shaped subset K of a Banach space X which satisfies Opial's condition, has a common fixed point using a common fixed point theorem due to Lee and Cho [10], and consequently a sequence of fuzzy mappings with the condition (*), (**) or (***) has a common fixed point. As corollaries we obtain fixed point theorems for nonexpansive type fuzzy [respectively, compact-valued] mappings F [resp., f] from a nonempty weakly compact and star-shaped subset K of a Banach space X which satisfies Opial's condition to W(X) [resp., 2^{K}].

The results for the nonexpansive compact-valued mappings are the case of replacing convexity with star-shapedness in Theorem 3.5 due to Husain and Latif [8].

Following Nguyen [14] we define: Let X, Y and Z be any nonempty sets, and $A \in \mathcal{H}(X)$ and $B \in \mathcal{H}(Y)$ where $\mathcal{H}(X)$ is the collection of all fuzzy sets in X. If $f: X \to Y$, then the fuzzy set f(A) is defined via the extension principle by $f(A) \in \mathcal{H}(Y)$ and $f(A)(y) = \sup_{x \in f^{-1}(y)} A(x)$.

If $f: X \times Y \to Z$, then the fuzzy set f(A, B) is defined via the extension principle by $f(A, B) \in \mathcal{F}(Z)$ and $f(A, B)(z) = \sup_{(x, y) \in f^{-1}(z)} [\min\{A(x), B(y)\}].$

PROPOSITION (NGUYEN). Let $f: X \times Y \to Z$ and $A \in \mathcal{H}(X)$ and $B \in \mathcal{H}(Y)$. Then a necessary and sufficient condition for the equality $[f(A,B)]_{\alpha} = f(A_{\alpha}, B_{\alpha})$ for all $\alpha \in [0,1]$ is that for all $z \in Z$, $\sup_{(x,y) \in f^{-1}(z)} [\min\{A(x), B(y)\}]$ is attained.

A subset K of a Banach space X is said to be star-shaped if there exists a point $v \in K$ such that $tv + (1-t)x \in K$ for all $x \in K$ and 0 < t < 1. The point v is called the star center of K.

THEOREM 3.2 [10]. Let g be a nonexpansive mapping from a complete metric linear space (X, d) to itself. If $(F_i)_{i=1}^{\infty}$ is a sequence of fuzzy mappings of X into W(X) satisfying the condition (**), then there exists a point $x \in X$ such that $\{x\} \subset \bigcap_{i=1}^{\infty} F_i(x)$.

PROPOSITION 3.3. Let K be a nonempty bounded star-shaped subset of a Banach space X and g a nonexpansive mapping from X into itself. If $(F_i)_{i=1}^{\infty}$ is a sequence of fuzzy mappings of K into W(X) satisfying the condition (****), then there exist a sequence $(x_n)_{n=1}^{\infty}$ in K and a sequence $(u_n)_{n=1}^{\infty}$ in X satisfying $\{u_n\} \subset F_i(x_n)$ for all $i \in \mathbb{N}$ such that $||x_n - u_n|| \to 0$ as $n \to \infty$.

PROOF. Let x_0 be the star-center of K. Choose a real sequence $(k_n)_{n=1}^{\infty}$ such that $0 < k_n < 1$ and $k_n \to 0$ as $n \to \infty$. Then for each $x \in K$, $k_n x_0 + (1 - k_n) x \in K$. Define a fuzzy mapping F_1^n of K into W(X) by setting $F_i^n(x) = k_n \{x_0\} + (1 - k_n)F_i(x)$ for all $i \in \mathbb{N}$, then by Proposition 3.3 in [14] it follows that $[F_i^n(x)]_{\alpha} = k_n x_0 + (1 - k_n) [F_i(x)]_{\alpha}$ for all $i \in \mathbb{N}$ and each $\alpha \in [0, 1]$. Now we show that for each $n \in \mathbb{N}$, $(F_i^n)_{i=1}^{\infty}$ is a sequence of fuzzy mappings satisfying the condition (**). If we let $\{u_x\} \subset F_i^n(x)$ for each $x \in K$, we get $u_x = k_n x_0 + (1 - k_n) v_x$ for some $v_x \in K$ such that $\{v_x\} \subset F_i(x)$. Since $(F_i)_{i=1}^{\infty}$ satisfies the condition (****), there exists a $\{v_i\} \subset F_j(y)$ for all $y \in K$ such that $||v_x - v_i|| \le ||g(x) - g(y)|| \le ||x - y||$. Put $u_1 = k_n x_0 + (1 - k_n)v_2$, clearly by definition of $F_j(y)$ we get $\{u_y\} \subset F_j^n(y)$ and $\| u_x - y_y \| = \| (1 - k_n) (v_x - v_y) \| \le (1 - k_n) \| g(x) - g(y) \| \le (1 - k_n) \| x - y \|$ which proves that $(F_i^n)_{i=1}^{\infty}$ is a sequence of fuzzy mappings satisfying the condition (**). The common fixed point theorem for a sequence of fuzzy mappings due to Lee and Cho [10] i.e., Theorem 3.2 guarantees that for each fixed $n \in \mathbb{N}$, $(F_i^n)_{i=1}^{\infty}$ has a common fixed point in K, say $\{x_n\} \subset F_i^n(x_n) \in W(K)$ for all $i \in \mathbb{N}$. From the definition of $F_i^n(x_n)$ there exists a $\{u_n\} \subset F_i(x_n)$ such that $x_n = k_n x_0 + (1 - k_n)u_n$ for all $i \in \mathbb{N}$ and each fixed $n \in \mathbb{N}$. Thus $||x_n - u_n|| = ||k_n x_0 (1 - k_n) u_n - u_n|| = k_n ||x_0 - u_n||$. By the definition of W(K), $\{u_n\} \subset F_i(x_n) \in W(K) \text{ implies } u_n \in K.$ Thus $\{||u_n - x_0||\}$ is bounded. So by the fact that $k_n \to 0$ as $n \to \infty$, we have $||x_n - u_n|| \to 0$ as $n \to \infty$.

We use the following notion due to Opial [15]. A Banach space X is said to satisfy Opial's condition [15] if for each $x \in X$ and each sequence $(x_n)_{n=1}^{\infty}$ weakly convergent to x,

$$\frac{\lim}{n \to \infty} \|x_n - y\| > \frac{\lim}{n \to \infty} \|x_n - x\|$$

for all $y \neq x$.

PROPOSITION 3.4. Let K be a nonempty subset of a Banach space X which satisfies Opial's condition and F a g-nonexpansive type fuzzy mapping of K into W(K). Let $(x_n)_{n=1}^{\infty}$ be a sequence in K which converges weakly to an element $x \in K$. If $(y_n)_{n=1}^{\infty}$ is a sequence in X such that $\{x_n - y_n\} \subset F(x_n)$ and converges to $y \in X$, then $\{x - y\} \subset F(x)$.

PROOF. Since F is a g-nonexpansive type fuzzy mapping, there exists a $\{v_n\} \subset F(x)$ such that $\|x_n - y_n - v_n\| \le \|g(x_n)g(x)\| \le \|x_n - x\|$. It follows that $\frac{\lim_{n \to \infty} \|x_n - y_n - v_n\| \le \frac{\lim_{n \to \infty} \|x_n - x\|}{n \to \infty}$. Since every weakly convergent sequence is necessarily bounded, limits in the proceeding expression are finite. Since $(v_n)_{n=1}^{\infty}$ is a sequence in a compact subset $[F(x)]_{\alpha}$ of X for each $\alpha \in [0,1]$, there is a subsequence of $(v_n)_{n=1}^{\infty}$, also denoted by $(v_n)_{n=1}^{\infty}$, converging to $v \in [F(x)]_{\alpha}$ for each $\alpha \in [0,1]$. Hence $\{v\} \subset F(x)$, therefore

$$\begin{split} \lim_{n \to \infty} \|x_n - y_n - v_n\| &= \lim_{n \to \infty} \|x_n - y_n - v_n - (y + v) + (y + v)\| \\ &\geq \lim_{n \to \infty} (\|x_n - (y + v)\| - \|(y_n + v_n) - (y + v)\|) \\ &\geq \lim_{n \to \infty} \|x_n - (y + v)\| + \lim_{n \to \infty} (-\|y_n + v_n - y - v\|) \\ &= \lim_{n \to \infty} \|x_n - (y + v)\| \end{split}$$

Thus we have shown that $\frac{\lim}{n \to \infty} ||x_n - x|| \ge \frac{\lim}{n \to \infty} ||x_n - (y + v)||$.

Since $(x_n)_{n=1}^{\infty}$ converges to x weakly, Opial's condition implies that x = y + v, so $x - y = v \in [F(x)]_{\alpha}$ for each $\alpha \in [0,1]$. Hence $\{x - y\} \subset F(x)$ and the proposition is proved.

REMARK. From the above proof it follows that the weak limit of fixed points of a nonexpansive-type fuzzy mapping F defined on a nonempty subset K of a Banach space X satisfying Opial's condition, in particular for a Hilbert space is also a fixed point of F.

THEOREM 3.5. Let K be a nonempty weakly compact star-shaped subset of a Banach space X which satisfies Opial's condition. If $(F_i)_{i=1}^{\infty}$ is a sequence of fuzzy mappings of K into W(K) satisfying the condition (****), then $(F_i)_{i=1}^{\infty}$ has a common fixed point.

PROOF. Since K is weakly compact, it is a bounded subset of X. By the Proposition 3.3 there exist a sequence $(x_n)_{n=1}^{\infty}$ in K and a sequence $(u_n)_{n=1}^{\infty}$ in X satisfying $\{u_n\} \subset F_i(x_n)$ for all $i \in \mathbb{N}$ such that $||x_n - u_n|| \to 0$ as $n \to \infty$. Put $y_n = x_n - u_n$. K being weakly compact, we can find a weakly convergent subsequence $(x_m)_{m=1}^{\infty}$ of $(x_n)_{n=1}^{\infty}$. Let x_0 be the weak limit of the sequence $(x_m)_{m=1}^{\infty}$. Clearly $x_0 \in K$ and we have $y_m = x_m - u_m$, $\{u_m\} \subset F_i(x_m)$ for all $i \in \mathbb{N}$. Then it follows that $y_m \to 0$ and by Proposition 3.4 there exists a fixed point $x_0 \in X$ such that $\{x_0\} \subset F_i(x_0)$ for all $i \in \mathbb{N}$.

THEOREM 3.6. Let K be a nonempty weakly compact star-shaped subset of a Banach space X which satisfies Opial's condition. If $(F_i)_{i=1}^{\infty}$ is a sequence of fuzzy mappings of K into W(K) satisfying the condition (*), (**) or (***), then $(F_i)_{i=1}^{\infty}$ has a common fixed point.

PROOF. It is proved by the fact that the condition (***) [respectively, (*)] implies the condition (****) [resp., (**)].

If we put $F_i = F$ for all $i \in \mathbb{N}$ in Proposition 3.3, then the sequence of fuzzy mappings $(F_i)_{i=1}^{\infty} = (F)$ in the condition (****) is a sequence of g-nonexpansive type fuzzy mappings. Thus we obtain the following corollary for g-nonexpansive type fuzzy mappings.

COROLLARY 3.7. Let K be a nonempty weakly compact star-shaped subset of a Banach space X which satisfies Opial's condition. Then each g-nonexpansive type fuzzy mapping $F: K \to W(K)$ has a fixed point.

COROLLARY 3.8. Let K be a nonempty weakly compact star-shaped subset of a Banach space X which satisfies Opial's condition. Then each nonexpansive type, compact-valued mapping $f: K \to 2^K$ has a fixed point.

PROOF. Define $F: K \to W(K)$ by $F(x) = \chi_{f(x)}$ then F is a nonexpansive-type fuzzy mapping. By Corollary 3.7 there exists a point $x \in X$ such that $\{x\} \subset F(x) = \chi_{f(x)}$ i.e., $x \in f(x)$.

Corollary 3.8 is a generalization of the following theorem due to Husain and Latif [8].

THEOREM 3.9. Let K be a nonempty weakly compact convex subset of a Banach space X which satisfies Opial's condition. Then each nonexpansive type, compact-valued mapping $f: K \to 2^K$ has a fixed point.

COROLLARY 3.10. Let K be a nonempty weakly compact star-shaped subset of a Banach space X which satisfies Opial's condition. Then each nonexpansive fuzzy mapping $F: K \to W(K)$ has a fixed point.

COROLLARY 3.11. Let K be a nonempty weakly compact star-shaped subset of a Banach space X having a weakly continuous duality mapping. Then each nonexpansive-type fuzzy mapping $F: K \to W(K)$ has a fixed point.

PROOF. If a Banach space X admits a weakly continuous duality mapping, then it satisfies Opial's condition [6].

ACKNOWLEDGEMENT. We would like to express our thanks to the referee for his valuable comments and suggestions.

REFERENCES

- [1] BOSE, R. K. and SAHANI, D., Fuzzy mappings and fixed point theorems, *Fuzzy Sets and Systems* 21 (1987), 53-58.
- [2] CHANG, S. S. and HUANG, N. J., Fixed point theorems for generalized fuzzy mappings, *Acta of Engineering Math.* No. 2 (1984), 135-137 (in Chinese).
- [3] CHANG, S. S., Fixed point theorems for fuzzy mappings, *Kexue Tongbao* 14 (1984), 833-836 (in Chinese).
- [4] CHANG, S. S., Fixed degree for fuzzy mappings and a generalization of Ky Fan's theorem, Fuzzy Sets and Systems 24 (1987), 103-112.
- [5] CHITRA, A., A note on the fixed points of fuzzy maps on partially ordered topological spaces, *Fuzzy Sets and Systems* 19 (1986), 305-308.
- [6] GOSSEZ, J. P. and LAMI DOZO, E., Some geometric properties related to the fixed point theory of non-expansive mappings, *Pacific J. Math.* 40 (1972), 565-573.
- [7] HEILPERN, S., Fuzzy mappings and fixed point theorem, J. Math. Anal. Appl. 83 (1981), 566-569.
- [8] HUSAIN, T. and LATIF, A., Fixed points of multivalued nonexpansive maps, *Internat. J. Math. & Math. Sci.*, Vol. 14, No. 3 (1991), 421-430.
- [9] LEE, B. S. and CHO, S. J., A fixed point theorem for contractive-type fuzzy mappings, Fuzzy Sets and Systems 61 (1994), 309-312.
- [10] LEE, B. S. and CHO, S. J., Common fixed point theorems for sequences of fuzzy mappings, to appear in Internat. J. Math. & Math. Sci.
- [11] LEE, B. S., CHO, S. J., LEE, G. M. and KIM, D. S., On the common fixed point theorems for a sequence of fuzzy mappings, submitted.
- [12] LEE, B. S., LEE, G. M., CHO, S. J. and KIM, D. S., A common fixed point theorem for a pair of fuzzy mappings, submitted.
- [13] LEE, B. S., LEE, G. M., CHO, S. J. and KIM, D. S., Generalized common fixed point theorems for a sequence of fuzzy mappings, to appear in *Internat. J. Math. & Math. Sci.*
- [14] NGUYEN, H. T., A note on the extension principle for fuzzy set, J. Math. Anal. Appl. 64 (1978), 369-380.
- [15] OPIAL, Z., Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967), 591-597.
- [16] SOM, T. and MUKHERJEE, R. N., Some fixed point theorems for fuzzy mappings, Fuzzy Sets and Systems 33(1989), 213-219.