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ABSTRACT. In this paper, we generate asymmetric Fourier kernels as solutions of
ODE’s. These kernels give many previously known kernels as special cases. Several

applications are considered.
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1. INTRODUCTION.
In a previous paper [1], we indicated how Fourier kernels could be generated as

solutions of ordinary differential equations and thus, we generated a large number of
hitherto unknown Fourier kernels. In this paper we pursue the same idea and generate
some more kernels of a different kind.

2. PRELIMINARIES.
In [1], we noted that solutions of the equation

d4u- A4u, 0 < x < (R) (1)

which solutions are bounded at infinity, are given by

u Ae’’Ax + B sinAx + C cosAx. (2)
dIf we now look at the operator and notice that

(’=(vu’"’ uv’"’) dx (vu’" u’") -(’u" u’v") ()

(where denotes differentiation w.r.t, x), then, (disregarding the contribution from x (R)),
dthe operator is seen to be symmetric over [0,(R)) provided u (and v) satisfy one of the

following conditions:

(1) u v 0 and u’ v’ 0 at x 0, (4a)
(2) u v 0 and u"= v"= 0 at x 0, (4b)
(3) u’ v’ 0 and u’" v"’ 0 at x 0, (4c)
(4) u"=v"= 0 and u’" v"’ 0 at x 0. (4d)
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In each one of these cases the corresponding solution of equation (1) is a Fourier

kernel. In case (1), e.g. we get

u - (e-xx -cosAx + sinAx) (5)

and, we have the pair

f(x) ._1_ f A(A)(e-Xx- cosAx + sinAx) dA (6a)

= A(A) f f f(x)(e-Xx- cosAx + sinAx) dx. (6b)

Similarly, case (4) gives

1 fc A(A)(e-Xx + cosAx- sinAx) dA (Ta)

(R) f(x)(e_Xx + cosAx- sinAx) dx. (Tb)=* A(A)

and similarly for other cases. 1 in equation (5) is a normalizing factor. The kernels in

equations (6) and (7) were noted by Guinand [2], though his arguments were quite

different.

We notice that the eigenfunction in equation (5) is symmetric in x and A. In this

paper we consider eigenfunctions which are not symmetric.

3. ASYMMETRIC KERNALS.
We notice from equation (3) that (disregarding the contribution from x (R)) the

operator is also symmetric if u (and v) satisfy any one of the following five conditions:

(1) u(0)= v(0)= 0; u" (0)= cat’(0), v" (0)= av’(0) (Sa)
(2) u’’ (0) v"’ (0) 0; u" (0) ore’(0), v" (0) av’(0) (8b)
(a) u’(0)= v’(0)= 0; u"’ (0)= u(0), v"’ (0)= v(O) (8c)
(4) u" (0) v" (0) 0; u"’ (0) au(0), v"’ (0) av(0) (8d)

and (5) u"’ (0) ore(0), v"’ (0) av(0), u" (0) /u’(0), v" (0) /v’(0). (8e)

In equations (8), a and / are known (real) constants, assumed positive.

We shall show that in each one of the above cases, the corresponding solutions of

equation (1), which are bounded at infinity, generate Fourier-like kernels. Specifically,

taking the normalization factors into account, we shall show that for suitable functions f(x)
and A(A),

f(x) f
(R)

A(A) k(A,x) dA (ga)

A(A) f f(x) k(A,x) dx (gb)

where k(A,x) takes any one of the following values (corresponding respectively to the five

cases in equations (8));

(i) kl(A,x 1 [e-xx cosAx + 2A+.______a sinAx] (i0)
[(A/a + i) + 111/ O
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()

(3)

(4)

k(,X,x) [Ae-X AsinAx + (A + 2a) cosAx]
[( +) + ]’/

k3(A,x

k4(),x)

[ae-),x + asinAx (2A3 + a) cosAx]

[A3e-Xx (A3+2a) sinAx + A3cosAx]

and (5) ks(A,x ,/
[(A4 + Aa + ,/) + (A4 + A3 + ,)]’/

[(,4_ O/)e-Xx (,4 .. 2, + /) sinAx + (A + 2/3A + a/3) cosAx]

(12)

(13)

(14)

It may be noted that, if we put a 0 in k(A,x), we get the kernel in equations

Also, if we let a (R) in k(A,x), we get the kernel in equations (6).

It may also be noted that k, k, k and k are all special cases of ks(A,x).
It may also be noted from equation (3) that the right hand side of this equation

vanishes if u and v satisfy the following conditions:

u"’(O) u"(O), u’(O) au(O), v’"(O) av"(O) and v’(O) v(O). (15)
In this case k is not a self conjugate kernel. However, we get the pair

f(x) f A(A) k (A,x) dA (16a)

f f(x)

where . [A(B- a)e-X + (2a+ Aa+ Afl)sinAx +(a+ + 2A)AcosAx]k(A,x) (17a)
[(++) + (a++)] ’/

k,(,x)* 2A(a-)e-Xx + (2a+ Aa+ A)sinAx + (a+ fl+,A)AcosAx_and

It may be noted that if we put fl 0 in ks, we get

,’( [ + (2 + )]
* -Xx+ asinAx + (2Aa)cosAx]and k ,x) (tSb),,( [ + ( + )]

as a pr of conjugate kernels. If we now didde l through by a and let a go to

ity, we get the known pr [3]

[-x cosAx]k,(,) + i. +

and k ,x) [e-X coslx]. (19b),( + sinlx +

Also, in equation (17), if we put B, we get another known kernel [4],
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,
and k 3(A,x) k 3(A,x). (20b)

6, 6

Since the arguments for showing the validity of equations (9) (or equations (16)) are

the same in each case, we shall concentrate on the simplest case, namely kl(A,x).

Proof of Equations (9) for k kl(A,x

We shall first show that

f(x) f A(A) kl(A,x dA (9a)

We shall assume that f(x) is in C l[O,(R)) and appropriately well-behaved at infinity.
Since now the integral (gb) exists, we may only show that

A() Lim f e-sx f(x) k,(,x) dx.
0/

Substituting from (9a), we have

s [So:A(#) e -sx kt(A,x) ki(#,x d d#.

(21)

The change in the order of integration in equation (22) is justified because of the

presence of the term e-sx, > O.

We have, putting a in equation (10),

f e-s= ki(A,x k,(#,x) dx

J(2AB1+1) + 1 ](2B+l) + 1

f e(e-X -coslx + (21 + 1)siIx)(e -eos +(+ 1)sin) dx

(2B+ 1)’ + 1d (2Jl,/l "t" 1) -I-

G(A,#,s), say
where

F(A,#,s) 1 s + A + (2#/1 + 1) #i
s + ,t + (s + ,x) + ’ (s + ) +

s+ 1 s + s

(s+)+ s+(+) s+(-)
1 + + ! (2#1+1) -(,Z + l)

( + ,) + (.) +

+ (2Z, + ) (Z, + ) +
+(s+) (+)+s

(23)
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(2A,+l) 1 A-# + 1 (2A1+1)(2#D1+1)
2 (-)+s 2

]. (4)
s + (-.) + ( + .)

From equations (23) and (24) we notice that

(1) G(A,#,s) is continuous in A, # and in A > 0, # > 0, > 0,

(2) Lim
S0

_+
(3) Lim Lim ( G(A,g,s) dg I,

eO S0

(4) G(X,,s) > 0 in ({X-{ < ) 0 (0 < < ) for sufficiently sml and suffidenfly

sml

and (6) f {G(X,,s){ dp ess for I X and I > 0.

From all Zhis, iZ follows ZhaZ for given X > 0, a > 0, b > 0,
b

and (2)Lim G(A,#,s) d# 0, A g [a,b]
s0 "a 1, A ta,b).

THs shows that

Lim G(A,#,s) 5(A-#), > O, # > 0
S-0

where is the (generalized) Dirac delta function, and we get

gim f A(#)G(A,#,s)d# A(A), A > 0,
s-0 0

as desired.

In order to show that the converse is true, i.e. (9b) (9a), we need to show that

f d g(x-), x > 0, > 0. (9c)

Alternatively [5], we may show that the Laplace Transform of the left hand side where

xp, - q is equal to 1/(p+q). This is easily shown, since the product of

f -’k,(,) d f kl(,) d

is a rational function of A. Taking the Laplace Transform of (9c), changing the order of

integration, and substituting, we get the integral of a rational function of A, from zero to

infinity. Integrating, and simplifying on Mathematica, .we easily get the desired result.

The arguments for other kernels are the same.

4. SOME APPLICATIONS.
1. These kernels kt, k,...,k would arise if we try to solve the problem of vibrations of

a semi-infinite beam whose end (x 0) is subject to appropriate conditions. We try to

solve, e.g.,
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with

and

b4u + b:u 0 in 0 < x < (R), > 0 (26a)
Ox &
u(O,t) 0 in > 0 (26b)
Uxx(0,t) a Ux(O,t in > 0 (26c)

u(x,0) f(x) in x > 0 (26d)
ut(x,0 g(x) in x > 0 (26e)

where the subscript denotes partial derivative w.r.t, that variable. This problem gives u

as the deflection in the problem of vibrations of an elastic beam whose end (x 0) is

elastically supported, so that the deflection u is zero at x 0 in > 0, and the bending
moment at x 0 is proportional to the slope at x 0. Physical considerations here

would require a > 0.

An appropriate representation of u in this case would be

u(x,t) f kt(A,x)[A(A)cosA2t + sinAt] dA
A

and we would require

and

f(x) f A(A) k,(A,x)dA (27a)

g(x) f (27b)

These equations are easily inverted with the help of equtions (9) and then,

boundary conditions

u f2(y) on x 0 in

j fs(Y) on x 0 in

u h(x) on y 0 in

0 < y < L (31a)

0 < y < e (31b)

x > 0 (31c)

substitution gives u. kl(x,y is given by equation (10).

2. The equation

-=Dlu Vu- D V4u + m4u- fl(x,y) (28)

where u denotes the cell density at a point, occurs in Mathematical Biology. The

corresponding steady state equation is

D V2u- D V4u + m4u f(x,y). (29)

m is a known constant, depending upon the rate at which the cells multiply. D here

accounts for the short range effects in the diffusion process while D accounts for the long

range ones [6]. If these effects are not isotropic, one may encounter a situation in which

the short range effects are dominant in the y-direction while the long range ones are

dominant in the x-direction. In such a case, after re-scaling, we would get the equation

Ou O4u
b m4u f(x,y). (30)y 4

We look for solutions of this equation in 0 < y < L x O, with the following
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0uand j7 0 on y L in x > 0 (31d)

and [u[ bounded as x

To solve this problem, we write

f, fi(A,y) (e-Ax- cosAx + sinAx) dx (32)u(x,y)

and look for fi(A,y). We get

1 f u(x,y)(e-Ax- cosAx + sinAx) dx. (33)

The kernel in equation (33) is the same as in equation (6). We shall call fi(A,y) the

F-Transform (x A) of u(x,y).
Taking the F-Transform of equation (30), we get

2A 2Ad=fi A4fi + m’fi (A,y) f3(Y) f2(Y)
dy

g(A,y), say (34a)
with

(,0) (A)
and dfi

t 0 on y=L

i’ and denote F-Transforms of f and h respectively.
solvable. If g 0, we get

(34b)

(34c)

This problem in fi(A,y) is easily

and

a(A,y) _jY-- 1 coshw(L-y) dg(A,)(sinhw) coshuL

L 1 coshw(L- ) W A4- m 0g(A,)(sinhwy) coshwL d,

and then u(x,y) is obtained from equation (32).
Equation (36) suggests that we shofld take L < r/(2m).
3.

(35)

(36a)

(36b)

We consider the bending of an anisotropic plate whose deflection u(x,y) is given by

04u + 2b 04U q-
Oq4u

f(x,y).
OX 20y2 oy (37)
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The case b 0 is of some importance [7] and we consider this case here.

f 0. If now, u is governed by the following boundary conditions"

u 0 along x 0 in y > 0

j f(x)/q along y 0 in 0 < x < 1

along y 0

u 0 along y 0

and [u[ bounded at infinity,

in x> 1

in x>O

an appropriate representation for u in this case would be

u f A (e-AY/vsin)(e-AX- cosAx + sinAx) dAA() taN"

where f(A) is given by

and

Also we take

(38a)

(38b)

(3sc)

(Z8d)

(39)

1 f(R) A(A) (e-Ax- cosAx + sinAx) dA f(x), 0 < x < 1 (40a)
"o

1_ f AA(A) (e-Ax- cosAx + sinAx) dA 0, x > 1. (40b)
"0

Such dual integral equations were considered in [8]. We look at these equations

again and derive an explicit solution.

If we write

1 f AA(A) (e-Ax- cosAx + sinAx) dA g(x), 0 < x < 1 (41)
"0

we get

1AA(A) V- f g({) (e-A- cosA + sinA{) d{. (42)

To evaluate g(), we substitute fzom equation (42) into equation (40a), invert the ozdez of

integration d evuate the inner integrM. Ts gives

f’ g() & X-- d (x), 0 < x < 1. (43)

Ts equation is ey to solve [9]. If we define the orator T by

C-  t)dtT 0 < x < 1 (44)x _t

d its conjugate by the reqrement that the inner product (T,) (,T ), we get

,
T f 2xi (t)dt (45)

x 4t _x

It is now easy to check that
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so that equation (43) may be written as a pair of equations

W g o and W d(x). (47)
These equations give

2 d f’ t)dt (48)

d t 2xaf(x) dx. (49)where t)
t’ x’

For the particular case of f(x) 1, 0 < x < 1, we get

4

_4) + 1 1g(0=[(1 - + 0< < 1. (s0)

The singularity at 0 in g() arises, because "normflly" f(0) 0 and our

assumption of f(x) in 0 < x < 1, creates trouble at zero. If f(x) x, 0 < x < 1,

ts trouble disappears and we get g() 2 The square root singflarity at

J
1 is well-known in other cases. It is easy to find g() for f(x) xn, n 0,1,2,3,....
4. It is to be noted that other prs of Duff Integrfl Equations may be solved in a

similar manner. If we have

1 /’(R) A(A) (-e-Ax + cosAx + sinAx) dA f(x),
"0

f AA(A) (e-Ax + cosAx + sinAx) dA 0,and

and we write

0 < x < 1 (51a)

x > 1 (51b)

1 " hA(A) (e-Ax + cosAx + sinAx) dA g(x), x > 1 (52)
"0

and proceed as for equations (40), we again arrive at

x +f
wch is the same as equation (43).
5. It is interesting to note that the following specifl case of equation (30).

02U 04U o, x > o, y > o, (g3a)
4

an elliptic equation so that only u o (and not ubehaves like and in

equation (26)), may be prescribed on x O. We may, e.g. consider the following

problem"
Find the solution of equation (53a) subject to the following undary conditions"

u(O,y) 0 in y > 0 (53b)
ux(O,y 0 in y > 0 (53c)

u(,o) f(x) ia 0 < (d)
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Uy(X,O) -g,(x) in x > (SSe)

and u] bounded at infinity.
An appropriate representation of u(x,y) in this case would be

,x)e-’2yu(x,y) f A(A) k( dA (54)

where k(A,x) is given in equation (5). Other boundary conditions on y 0 will give rise

to other kernals.

Equations (53d,e) now give rise to the following dual integral equations:

Find A(A) such that

f A(A) k(A,x)dA ft(x) in 0 < x < 1 (55a)

f A2A(A) k(A,x) dA gt(x) in x > i. (55b)

This is a new set of dual integral equations which have not been considered previously.

We propose to consider such dual integral equations subsequently.
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