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1. INTRODUCTION.

Gelf,’md Theorem in the title is the Representation Theorem for commutative normed rings

with an involution, which caa be stated as follows (in American terminology):

Representation Theorem of Gelfand. For each commutative (complex) B*-algebra/3, with iden-

tity, there exists a compact Hausdorff space S such that /3 is isomorphic and isometric to the

algebra C(S) of all continuous complex valued functions on S (see, for example, first corollary to

the Theorem in 26E of Loomis [3] or Theorem A in section 73 of Simmons [7]).
The isomorphism preserves also the involution, i.e. a* , where fi is the member of C(S)

corresponding to a (and a"* corresponds t.o a*).

{A B*-algebra (Sec. 72 of Simmons [7]) is a Banach algebra/3 with an involution x z* such

that x*x II=ll x 11 for all z E B}.

2. MAIN RESULT.

In the sequel we shall establish validity of the following proposition:

THEOREM. Representation Theorem of Gelfand implies Stone’s Representation Theorem for

Boolean Rings (see Appendix Three of Simmons [7])"



702 P. P. SANOROTNON

For each Boolean ring .A there exists a totally disconnected compact Hausdorff space S such that

,4 is isomorl)hic to the Boolean ring A(S) of all open-closed subsets of S (the operations of

are the symmetric difference AAB (Aq B U (A qB and intersection A N B, A C S, B C S).
PROOF. Assume validity of Gelfand Theorem. Let and - be operations of .A and let

and 0 be, respectively, its multiplicative and additive identities. We shall say that a finite set

{a a, of members of A is a decomposition of identity if aa @ a a, 1 (below we

shall write a, 1) and a, (R) a 0 if j.

For each decomposition {a, a,} of identity and each set {A1 A,} of complex num-

bers consider a formal sum f Z Aa. Let/3 be the class of all such formal sums. Let us use
,=1

the following notation: we shall write [.f] {ha a,} and A, A(a,) if f A,a, is any

member of/’.

Define relation ",-" on B’ as follows: f g if A(a) A(b) for any a e If] and b [g] such

that a . b = 0. It is an equivalence relation. In fact, we only need to prove reflexivity.

Let f g and g h, where f A,a,, g -]pb. and h u,ck. Assume that

a, )c y 0, then from the fact that @b we conclude that there is some integer j such that

a, c, (:_ b # 0. Then both a, (R) b # 0 and b )c # 0 (note that b , b b), which implies

A Pl Uk.

Now let us define addition, nmltiplication, multiplication with complex numbers and involu-

tion on B’ as follows: If f A,a,, g #zb and A is a scalar then

and

fg Z A,#.a, ) b. (2.2)

It is easy to see that these operations are invariant under the relation ",-," i.e. "f g" implies

"f + h g + h, fh gh and Af Ag." For example, if f, g d h are above d f g, then

f + h (A, + v)a, c d g + h ( + u)b c. If (a, c) (b c,) # O, then
,k

a, b 0 d k k’. This implies that A, , and from this we conclude that f + h g + h}.
Dee the semi-norm on ’ by setting f []= max{] A(a) ]" a If], a 0}. Also it is

ey to s that ]] is invariant under the relation "" i.e. f g implies f }]:] g ]}.
Let be the collection of a equivalence closes with respect o "". Then B is normed

linear algebra with respect to the operations induced by operations on ’ (we shall use

notation), the ditive identity 0 of is the set of all members of ;’ of the form f



STONE REPRESENTATION THEOREM OF BOOLEAN RINGS 703

vhere {a, a,, is some decomposition ,,f identit.v and A, 0 for 1 n. Also f 0

if and only if f =0. and it is not difficult to show that .fg I1-<11 f II" for all f, 9

Let B be the completion of B with respect to II. Then B is a commutative B*-algebra with

identity.

Apply Representation Theorem of Gelfand to B" There exists a compact Hausdorff space

S such that B is *-isomorphic and isometric to the algebra C(S) of all continuous complex

valued functions on S. For each f B let .t:(s) denote the corresponding image of f under this

isomorphism. Isometry between B and C(S) means that f sup ]/(s) ].
s_S

Now note that there is a natural imbedding of the Boolean ring .A into B: for each a .A let

f, 1-a + 0-a’, where a’ 1 + o is the complement of a in A. (Note that A has also a structure

of a Boolean algebra (see Appendix Three of Simmons [7]).) Then fafa fa, from which we

conclude that ]a(s) assumes either 1 or 0 at any ._ S. Let A {s S’fa(s) 1}, then

is the characteristic functim of A i.e. fa .4, and it follows from continuity of fa that A is

both open and closed in S. The correspondence a A is 1-1 and preserves both lattice and

algebraic operations of/3. A simplest way to establish this is to show that this correspondence

preserves multiplication and colnplementation. But both facts follow easily from the identities

"f(R) ff" and "faG’ 0" (a, b A and a’ a 1).

It remains to show that S is totally disconnected. Since S is a Hausdorff space, we need

only to show that for any open neighborhood U of so S there exists an open-closed set O

such that So O C U. Since every compact T2 space is normal, there exists a continuous real

valued function x(s) (a member of C(S)) such that X(So) 0, z(S U) 1 and 0 < z(s) <_ 1

everywhere else (see Urysohn’s Lemnla in Sec. 3, Chap. 8 of Royden [6] or 3C in Loomis [3]).
Let x /3 be such that 2(s)= x(s) nd lt f e B’, f a,a, be such that f- I1< . From

" a, and a, (: a 0 if # j" we conclude that sets A, A2 A, (corresponding to

a, a.,..., a,, under above discussed correspondence a A) are disjoint and U A, S. Hence

there exists exactly one index j (1, 2,..., n) such that so A. The set A is both open and

closed and s A implies ](s) ](so), from which we conclude that A C U: if s A,
then Ix(s)I<_l z(s)- () / f(o) x(o) / x(o)I< 1, and this implies that s e U.

To see that each open-closed subset A of S corresponds to some a .,4 we use compactness of

S, which inplies compactness of A. As above, for each s A we select an open-closed set O such

that s O C A. Compactness of A implies that there is a finite set {A1, Am of open-closed

subsets of S, each corresponding to sone a, ,4 (i 1... m), such that A I..J,"= A,. This

implies that A corresponds to sone a A (a a U a... U a,).
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