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ABSTRACT. We study the existence of solutions for the periodic boundary value problem for
some second order integro-differential equations with a general kernel. Also we develop the
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KEY WORDS AND PHRASES: Integro-Differential Equation, Upper and Lower Solutions,

Carath6odory function

1991 AMS SUBJECT CLASSIFICATION CODES: /45J05

1. INTRODUCTION

The purpose of this paper is to study the following periodic boundary value problem for a

second order nonlinear integro-ordinary differential equation

-u"(t)-- f(t,u(t),Ku(t)),u(O)--u(En),u’(O)--u’(2n) (1.1)

where f:I x R:’ R is a Carath6odory function, K is an integral operator in La(I) with kernel

k _La(J),J -I xl. Related to (1.1) we consider the linear problem

-u"(t) + Mu(t) +N[Ku](t) h(t), u(O) u(Etr), u’(0) u’(2n) (1.2)

where M,N E R, and h E L2(1).

By a solution u of (1.1) we mean a function u Ha(I) such that the function

t_I-*f(t,u(t),[Ku](t)) is a function in L2(I) satisfying the equation for a.e. ff.l, and

u(0) u(2), u’(0) u’(2).
Problem (1.1) is considered in [7] with f continuous and K a Volterra integral operator with

positive kernel. The authors developed the monotone iterative method for (1.1) based on a

comparison result. As it is pointed out in [6], the method of [7] is not applicable to the general
situation. Erbe and Guo studied problem (1.1) with f continuous, and k continuous and positive.

They first considered the linear problem (1.2) and gave an estimate on kll We note that in [6],
Ku NTu +NxSu with N, N1 real numbers, T an integral operator of Volterra type, and S an integral

operator of Fredholm type. Problem (1.1) is studied in [8] under the assumption that f(t,u,v) is

continuous and increasing in v, and in [7] for f continuous and K of Volterra type. Following the

ideas of [6] we study (1.1) in the general case, i.e., fis a Carath6odory function and k is anL kernel.

Also, we do not require k to have constant sign on J. For the linear problem (1.2) to have a unique

solution, we give an estimate on kll that improves the estimation given in [6], and our estimate is

the best possible in the sense that if equality is attained, then the existence-uniqueness result for

(1.2) is not valid anymore.

*Research partially supported by DGICYT, Project PB91-0793.
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PBVP FOR SECOND ORDER ORDINARY DIFFERENTIAL EQUATION
We recall here, for convenience of the reader, some results for the following periodic boundary

value problem (PBVP) for a linear second order ordinary differential equation. The problem

-u"(t)+Mu(t)---h(t); u(O)=u(2n); u’(0)-u’(2) (2.1)

with M -m2,m > 0 and h L2(I), has a unique solution given by the expression

2n

u(t)-- J0 G(t,s)h(s)ds,

the Green function G is given by

l.[e’l’-S)+e’(2-’/sr].O<8<<27rG(t,s)-
2m(e "- 1)

/---- 1)[em(S-t)q" e’a ’)]" 0 _< _<. <_ 27r

Moreover, G is continuous on J -I I,
2

min{G(t,s)’(t,s)J}
e’

G(t,s)ds --, m(e2’’- 1)" a,

/2m
b.and max{G(t,s)" (t,s) .J} =2,,2,,_

Since G(t,s) a > 0 for every (t,s)J we obtain the following maximum principles:

h>0 a.e. on I implies u>0on I, (2.3)

h<0 a.e. on I implies u<0on I (2.4)

Obviously, h-0 implies u-0, but if h >0 on a set of positive measure of I, then

u(t) af h(s)ds > 0 for every

3. LINEAR INTEGRO-DIFFERENTIAL EQUATIONS
We now consider the integro-differential problem (1.2) with M > 0,

N R,[Ku](t)--fok(t,s)u(s)ds,k .L2(J) and h

Note that K is an integral operator, and it could be either of Volterra or Fredholm type. Even
K can be of mixed type as in [6] where

Ku NTu +NSu (3.1)

with N,N real numbers, T an integral operator of Volterra type with kernel k0, and S an integral

operator of Fredholm type with kernel k. Thus, k N k0 +N k.
In what follows, I! denotes the usual norm in L

According to the results of section 2, we have that u is a solution of (1.2) if and only if

u(t) fo2 G(t,s)[h(sl -N[Ku](s)]ds (3.2/

Using Fubini’s theorem it is easy to see that for any
2n 2

-N fo G(t,s)[Ku](s)ds fo x(t,s)u(s)ds

with
2

x(t,s)---N fo G(t,r)k(r,s)ds (3.3)

Therefore, equation (3.2) is equivalent to the following abstract equation
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where

and

u(t) w(t) + [Tu ](t) (3.4)

2

w(t)- fo G(t,s)h(s)ds

2

[Tu](t)-- J0 "r.(t,s)u(s)ds

In consequence, u is a solution of the linear problem (1.2) if and only if u is a fixed point of

the operator Tw :L Z(l) LZ(l), Tw(u) w + Tu.

THEOREM 3.1. Suppose that

lIz < 1, (3.5)

then (1.2) has a unique solution u---lim,,._.(R)u,, uoLZ(1), u,/t--T,(u,), n >0. Moreover, the

solution is given by the following relations

u(t)- fo [G(t,s)+H(t,s)]h(s)ds, (3.6)

2

H(t,s)-- J0 L(t,r)G(r,s)dr (3.7)

2

L----x’t,, x--x, "t,(t,s)--f x,_(t,r)x(r,s)dr, n>2. (3.8)
do

PROOF. Note that T(u) T(v)[[2 11" u vll for any u, v L2(I). By the contraction

principle of Banach we have that T, has a unique fixed point which is the solution of (1.2). Now,

we choose u0 w. Using again Fubini’s theorem, it is easy to see that

2

u,(t) w(t) + J0 H,(t,s)h(s)ds

H.(t,s)-- fo L,(t,r)G(r,s)dr,

We have that lix,ll2-: 1111’2, and taking into account (3.5) we see that the series X*-: is

convergent in L2(J). We now deduce that {H,,} H in L:’(J) and the validity of formulas (3.6),
(3.7), (3.8). I

Taking into account (3.3)we have that xll kll: Gl[2. In consequence, k[l: all < implies

that the linear problem (1.2) has a unique solution. It is possible to give different estimates for k

that imply that (3.5) holds. For instance, if there exists c > 0 such that

Ifo2k(/,s)dsl <c forevery sl (3.9)

then I(,)1 b or vy (,)j and 1i11 2b. Therefore, c- implies that the linear

problem (1.2) is uniquely solvable.

Il. 211.
In the case that k eL(R)(J)then I(t,s)l --- for a.e. (t,s)eJ. Thus, IIll= <-w-- and, in this

M
situation, kll < implies that :[12 < 1.
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Note that in the case that K is given by (3.1), Erbe and Ouo gave the estimate (see formula (4)
in [6])

M
Soil goll / N[I ll < 2-

which obviously implies (3.5).
A natural question is if Theorem 3.1 remains valid in the critical case 11 - The following

example shows that in such a case the linear problem (1.2) may have either no solution or an infinite

number of solutions, thus showing that the estimate (3.5) is as sharp as possible.

EXAMPLE. Take k c G, c E R such that kll 1. The integral operator T associated to

"t is compact and selfadjoint. Thus, +1 or -1 is an eigenvalue of T. Suppose that +1 is an eigenvalue

and choose u , 0 with Tu u. Thus, by the Fredholm alternative theorem, the equation u w + Tu

has either no solution or an infinite number of solutions.

4. MAXIMUM PRINCIPLE
We are now interested in obtaining a similar result to (2.4) for the linear integro-differential

problem (1.2). Using the representation (3.6) for the solution of (1.2), we see that it is equivalent

to show that G +H a:0 a.e. onJ. Since G(t,s)>a for any (t,s)EJ, we can affirm that G /H >0

a.e. on J if, for instance, nil -: a. We first give an estimate for nil
THEOREM 4.1. Suppose that k EL(R)(J) and

M
(4.1)I111 <2:n

Then, (3.5) holds and

n
M(M 2 **)"

PROOF. From the relation (3.3) we deduce that x EL(R)(J), and

I1:11- 1
11- --ff-- d < 2"

On the other hand, x, L’(J) for any n N, and 11- a(2nay-x. This implies that the series

x, is convergent in L’(J). Therefore,

d

and

(4.2)

d
Ilnll < M(I_2d)

which is precisely estimate (4.2).
We note that the right hand side of (4.2) tends to 0 when 11. tends to 0. Thus, we obtain the

following maximum principle for the linear equation (1.2).
THEOREM 4.2. Assume that k EL (R)(J) and

Mme
:11 <

e2,,,,, + 2nme
"r. (4.3)

Then, we have that (3.5) holds and G +H a 0 a.e. on J.
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PROOF. We first note that the following inequality holds true:

me

e’- +2tme 2rt
(4.4)

MHence, 11 - Now, using (4.2) we have for a.e. (t,s) @J that

G(t,s)+H(t,s)>a
M(M 211 kll )"

Combining (4.2) and (4.3) we obtain that nil a.

Therefore, we can write that G(t,s) + H(t,s) a -Ilnll /0 for a.e. (t,s) EJ, completing the

proof of the theorem.

As a consequence, we obtain that if inequality (4.3) holds then

h 0(< 0) a.e. on I implies u 0(< 0) a.e. on J (4.5)

We now consider the case when the kernel has constant sign on J. If k :a 0 a.e. on J, then "t 0

a.e. on J and we have that H 0 a.e. on J. Then, trivially the maximum principle (4.5) holds.

Ifk 0 a.e. on J, then’t 0 a.e. onJ and the previous reasoning is not valid. However, we have

that (-1)"’t,, 0 a.e. on J, n a: and this is useful to prove the following result.

THEOREM 4.3. Suppose that k @L(R)(J) is such that k 0 a.e. onJ and

m
kll [vt(e :’’‘’’ 1):’ + 162Me2’’ -(e 2,,,, 1)] r/.8I2em

(4.6)

Then, (3.5) holds and G +H 0 a.e. on J.
M MPROOF. We first note that r/ < and then k!l < . On the other hand,

and

Hence,

for a.e. (t,s)J,

for (t,s) J. In consequence,

,,, :,,11 : d(2nd) -2. a gll zll-
.., 1-(2:d) gz-4llk[l$

nodd nodd

-MIIZIIL(t,s) >M2 4[I z:ll

H(t,s)

G+Ha-M’-- 4llkll
a

on J. Now, ax > 0 if and only if

4e"]l kll + m(e 2,,, 1)II kll. -M2e’ O,

and this is true for ll [0,r+].

Note that estimate (4.6) improves (4.3) since r < r+.
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5. MONOTONE ITERATIVE METHOD
We now consider the nonlinear equation (1.1). We recall that fis a Carath6odory function if

f(t,., .) is continuous for a.e. l,f(.,u,v) is measurable for any u,v R, and for any R > 0 there

exists o o, L :’(I) such that If(t,u, v) o(t) for a.e. I for any u, v R with max( u ,I vl) R.

DefineH(/) {u H(1):u(O) u (2 n), u ’(0) u’(2n)}. By a solution u of(1.1) we mean a function

u H(1)such that I [F(u)](t) f(t,u(t),[Ku](t)) is a function ofL(I) satisfying the equation
for a.e. I.

We say that a H(I) is a lower solution for (1.1) ifFa CL(1), and

-a"(t) f(t,a(t),[Ka](t)) for a.e. I. (5.1)

Similarly, we define an upper solution as a function H(I) such thatF L(I), and

-"(t)f(t,t),[K](t)) fora.e, I. (5.2)

In u L(I), in general, Fu is not a function ofL z(1). The condition that F mapsL z(1) into L z(1)
is equivalent 1 to the existence ofb L(I), a R such that f(t, u, v)[ b(t) + a([ u + ]vl) for a.e.

I and every u, v R.
Now suppose that condition (3.9) is verified. Obviously, (3.9) is satisfied if, for instance,

k L"(J). However, k(t,s)- s-a is a kernel that satisfies (3.9) but does not belong to L’(J). Then

for any u L’(1) we have that

I[Ku](t)l k(t,s)u(s) < cll ull-,

andKu L(I). In consequence, If(t, u, [Ku ](/))l a(t) for a.e. I, whereR max(ll u c u II-),
and Fu L(I).

Thus, if condition (3.9) holds and a H(1), then Ka L’(1) and Fa EL2(1).
If fi are lower and upper solutions of (1.1) respectively, we shall assume that

afi on I. (5.3)

Thus, k 0( 0) implies that Ka ( a.e. on L

In the case that k 0 a.e. on J, we introduce the following condition: there exist M > 0,N > 0

such that

f(t,u,v)- f(t,w,x) -M(u w)-N(v -x) (5.4)

for a.e. l,a(t)w u (t),and[Ka](t)x v [K](/).

If k 0 a.e. on J, we shall use the condition: there exist M > 0,N > 0 such that

f(t,u, v)- f(t, w,x) -M(u w)-N(x v) (5.5)

for a.e. I, (t) w u t), and [K] (t) v x [Ka] (/).

THEOM 5.1. Assume that k L’(J),k 0 a.e. onL adll ll-. Zn aitM upeose

that there exist H(I) lower and upper solutions of(1.1) respectively such that 0.3) and 0.4)

hold. Then, there exits monotone sequences {a,} , and {} uniformly on I with - a

and o . Here and are the minimal and mimal solutions of (1.1) respectively on [
Moreover, these sequences veri a, , o.

PROOF. For [], let us consider the following linear periodic boundary value problem

u" + Mu +N[Ku]- hn(t), u(0)- u(2n), u’(0)- u’(2n) (5.6)
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where h(t) h(t) f(t,rl(t),[KN](t)) + Mrl + N[KN](t).

This linear problem has a unique solution u --Arl in view of Theorem 3.1 since N. k]] r.

Moreover, in this case G +H a 0 a.e. on J.

The operator A is well defined from [ct, [3] to [ct, [3] and A is increasing.

Indeed, let N [ct, 13] and define v u ct. Thus, using (5.4), we obtain

-v" +My +NKv f(t,N,Krl) +Mr +NKrl (-cf’ + Mct +NKct)

f(t, N,KN) + Mri +NKrl f(t, ct, Kct) Mct NKct a O

Hence, by virtue of Theorem 4.3 we deduce that v a: 0 on L Similarly, one can show that u [3 on

I.

To show the monotonicity ofA, let Ni G [ct,[3], u, -AN,, 1,2, and w -ui-uz. Hence,

-w" +Mw +NKw f(t, Nt ,Krl) +MN +NKrI, f(t, r12 ,Krh) Mrh NKN2 0

and then, w 0.

We now define ct0 , ct, A et,, n 0. By the properties of the operator A, the sequence

{ct, is increasing and uniformly bounded on I. Then, {t, } ’ pointwise on L Writing the integral

representation forA a, and using standard arguments we obtain that is actually a solution of (1.1).
Analogously, defining I- 13, 15, /-AI3,, n 0, {13,,} ,I, P, where xp is solution of (1.1).

To show that q and q., are the minimal and maximal solutions of (1.1) in [ct,13], let u

be a solution of (1.1). Then,Au u, and using the properties of the operatorA we have that a., _< u _</3,

for every n N. Passing to the limit when n oo we obtain that 9 u < p.
Ifk < 0 a.e. onJ, then we can use directly that G +H > 0 a.e. onJ to obtain the following result.

u In addition,THEOREM 5.2. Suppose that k L(R)(J), k 0 a.e. on J, and

assume that there exist ct, fJ H,(I) lower and upper solutions of(1.1) respectively such that (5.3)

and (5.5) hold. Then, there exist monotone sequences {a,,} ’ , and {1,,} xp uniformly on I with

% , f, fo f

and t,p are the minimal and maximal solutions of (1.1) respectively on [o.,

PROOF. ForN [a,13], let us consider the linear problem (5.6). In this ease,Kt > u KI >

on/. As in the proof of Theorem 5.1 we have that (5.6) has a unique solution u =AN. The operator

A is well defined from [ct,[3] to [ct,[3], and it is increasing. As in the proof of Theorem 5.1 we

construct monotone sequences {a, } ’ 9 and {13, } ap, where and p are the minimal and maximal

solutions of (1.1) respectively between a and [3.
It may occur that

Ks K[3 a.e. on I (5.7)

even if ct [3 and k changes sign onJ since [Kct](t) depends on the value of k(t,s)ct(s), 0 s 2.

(For example, take e>0, k(t,s)= 1 for 0<s <2n-e, k(t,s)=-I for 2n-e <s 2n, and t. 1,

[3 2.) In such a situation, we can apply the previous results to obtain.

THEOREM 5.3. Suppose thatk L(R)(J),N kl] < r, and (5.3), (5.4), (5.7) hold. Then, there

exist monotone sequences {,} ’ , and {[3,} p uniformly on I with Cto-et, o-[ and

et0 a, [3, < [30. Here and ap are the minimal and maximal solutions of (1.1)
respectively on [ct, I].
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If Kct KI5 a.e. on J (even if k has no constant sign on J), then we have an analogous result

using (5.5).
In the general case (k has no constant sign on J) we are able to deal with a linear integral

perturbation of the ordinary differential equation-u"--f(t,u), being such a perturbation of the type

N Ku,N 5 R. In concrete, we consider the problem

-u"-f(t,u)+N.Ku, u(O)-u(2n), u’(O)-u’(2n). (5.8)

We now require the following condition: there exists M > 0 such that

f(t,u) f(t, v) -M(u v) (5.9)

for a.e. 1,et(t) v u [5(t). In this case, for rl [ct, l], the linear problem (5.6) reads

u" + Mu f(t, rl) +Mr +NKr

THEOREM 5.4. Consider the nonlinear problem (5.8) were f satisfies condition (5.9).

Suppose that k L(R)(1) is such that IN[ k[[ < r, and that there exist ct, f3 H"(1) lower and upper

solution of (5.8) respectively with a f3 on I. Then, there exists monotone sequences a, } , and, p uniformly on I with a cto ... a, ... 3, ... [3o 3. Here and ap are the minimal

and maximal solutions of (5.8) respectively on [a, ].
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