A NOTE ON FINITE CODIMENSIONAL LINEAR ISOMETRIES OF C(X) INTO C(Y)

SIN-EI TAKAHASI

Department of Basic Technology Applied Mathematics and Physics Yamagata University, Yomezawa 992, JAPAN and

TAKATERU OKAYASU

Department of Mathematics Faculty of Science Yamagata University, Yamagata 990, JAPAN

(Received April 24, 1994 and in revised form May 25, 1995)

ABSTRACT. Let (X,Y) be a pair of compact Hausdorff spaces. It is shown that a certain property of the class of continuous maps of Y onto X is equivalent to the non-existence of linear isometry of C(X) into C(Y) whose range has finite codimension > 0.

KEY WORDS AND PHRASES. Compact Hausdorff space, C(X), linear isometry, finite codimension 1991 AMS SUBJECT CLASSIFICATION CODES. 46B04, 46J10

1. INTRODUCTION

In [1], A. Gutek, D. Hart, J. Jamison and M. Rajagopalan proved that there are no isometric shift operators on C([a,b]), a result first proved in the real scalars by Holub [3]. Here [a,b] is any closed interval in the real line and C([a,b]) is the Banach space of all continuous complex-valued functions on [a,b]. By observing carefully the proof given in [1], one can note that C([a,b]) does not admit an isometric shift operator because the space [a,b] has the property that the set

$$\{(x,y) \in [a,b] \times [a,b] : \phi(x) = \phi(y), x \neq y\}$$

is infinite for every continuous map ϕ of [a, b] onto itself which is not injective.

The purpose of the note is to prove the following theorem which is based on the above idea:

THEOREM. Let (X,Y) be a pair of compact Hausdorff spaces. Then the following two conditions are equivalent:

(i) If there is a continuous map ϕ of Y onto X which is not injective, then the set

$$\{(y_1, y_2) \in Y \times Y : \phi(y_1) = \phi(y_2), y_1 \neq y_2\}$$

is infinite.

(ii) If there is a linear isometry of C(X) into C(Y) which has a finite codimension, then it is surjective.

Since both ([0,1],[0,1]) and (T^1,T^1) satisfy the condition (i), where T^1 is the unit circle in the complex plane, we get from this

COROLLARY 1. The only possible codimension of linear isometries $C([0,1] \to C([0,1])$ and $C(T^1) \to C(T^1)$ are zero or infinite.

Moreover, if V is the canonical linear map of $C(T^1)$ into C([0,1]) defined by

$$(Vf)(t) = f(e^{2\pi it}) \quad (f \in C(T^1), 0 \le t \le 1),$$

then V is an isometry and the range of V is the set of all $g \in C([0,1])$ such that g(0) = g(1). Hence V has codimension 1, and if there is a finite codimensional linear isometry of C([0,1]) into $C(T^1)$, say T, then VT is a linear isometry of C([0,1]) into itself such that $VT(C([0,1])) \subset C([0,1])$ and CODIMIT(T) + 1. From Corollary 1 it follows that VT must be surjective, a contradiction—hence we have also proved

COROLLARY 2. There is no finite codimensional linear isometry of C([0,1]) into $C(T^1)$

2. LEMMAS

In order to prove the main theorem, we have to prepare some lemmas

LEMMA 1. Let X be a compact Hausdorff space, M a subspace of C(X) whose codimension is $n < +\infty$, and K a closed boundary of X with respect to M (i.e., for any $f \in M$ there exists a point x in K with $|f(x)| = ||f||_{X}$, the supremum norm of f on X). Then the set $X \setminus K$ has at most n points.

PROOF. Assume that $X \setminus K$ has at least n+1 points, say $x_1,...,x_{n+1}$ For each $1 \le i \le n+1$, choose a function f_i in C(X) such that $f_i(x_i) = 1$ and $f_i(x) = 0$ for $x \in K \cup \{x_1,...,x_{n+1}\} \setminus \{x_i\}$ since K is closed. In this case, $\{f_1 + M, ..., f_{n+1} + M\}$ is linearly independent in C(X)/M since if

$$c_1(f_1 + M) + \dots + c_{n+1}(f_{n+1} + M) = 0$$

for some complex numbers $c_1,...,c_{n+1}$ there exists a function $g \in M$ such that $c_1f_1+...+c_{n+1}f_{n+1}+g=0$ and (since K is a boundary of X with respect to M) a point x_0 in K such that $\|g\|_{\infty}=|g(x_0)|$ Then

$$||g||_{\infty} = |c_1 f_1(x_0) + \cdots + c_{n+1} f_{n+1}(x_0)| = 0,$$

implying $c_1=0,...,c_{n+1}=0$ since $\{f_1,...,f_{n+1}\}$ is linearly independent, and it follows that $\operatorname{codim}(M)\geq n+1$

LEMMA 2. Let X and Y be compact Hausdorff spaces and ϕ a continuous map of Y onto X. If g is a function in C(Y) such that $g(y_1) = g(y_2)$ for all pairs $(y_1, y_2) \in Y \times Y$ satisfying $\phi(y_1) = \phi(y_2)$, then there is a function f in C(X) such that $f(\phi(y)) = g(y)$ for all $y \in Y$.

PROOF. Let g be a function in C(Y) such that $g(y_1)=g(y_2)$ for all pairs $(y_1,y_2)\in Y\times Y$ satisfying $\phi(y_1)=\phi(y_2)$ Let Y/ϕ be the quotient space of Y defined by ϕ , π_ϕ the canonical map of Y/ϕ onto Y/ϕ , and τ the canonical map of Y/ϕ onto X. Then the complex-valued function \tilde{g} on Y/ϕ defined by $\tilde{g}(\tilde{y})=g(y)$ for each $\tilde{y}\in Y/\phi$ is continuous, so setting $f=\tilde{g}\circ\tau^{-1}$ it is easy to see that f is a function with the desired properties

Finally, we will need the following result whose proof is straightforward

LEMMA 3. Let X be a compact Hausdorff space, K a compact subset of X, and A_K the Banach subspace of C(X) consisting of all $f \in C(X)$ which are constant on K. Then the Banach space $C(X)/A_K$ is isomorphic to a quotient space of C(K).

3. PROOF OF THEOREM

(i) \Rightarrow (ii) Let T be a linear isometry of C(X) into C(Y) which has a finite codimension. By the decomposition theorem of Holsztynski [2], there exists a closed boundary K of Y with respect to T(C(X)), a continuous map h of K onto X, and a continuous unimodular function u on Y such that

$$(Tf)(y) = u(y)f(h(y))$$

for all $f \in C(X)$ and $y \in K$ Since T has a finite codimension, it follows from Lemma 1 that K is a closed subset of Y whose complement is a finite set. Then h has a continuous extension to Y, say \tilde{h} . We claim that the map \tilde{h} is injective. Assume the contrary. Then by the condition (i) there is a mutually different sequence $\{\alpha_1,\beta_1,\alpha_2,\beta_2,...\}$ in Y such that $\tilde{h}(\alpha_n)=\tilde{h}(\beta_n)$ for all positive integers n, and where we can assume without loss of generality that $\{\alpha_1,\beta_1,\alpha_2,\beta_2,...\}\subset K$. Let n be any positive integer, and for each $1\leq i\leq n$ choose a function g_i in C(Y) such that $g_i(\alpha_i)=1$ and $g_i(y)=0$ for all $y\in Y\setminus U_i$, where U_i is a sufficiently small neighborhood of α_i . In this case $\{g_1+T(C(X)),...g_n+T(C(X))\}$ is linearly independent in C(Y)/T(C(X)), since if

$$c_1(g_1 + T(C(X))) + \dots + c_n(g_n + T(C(X))) = 0$$

for some complex numbers $c_1, ..., c_n$ there exists $f \in C(X)$ such that $c_1g_1 + ... + c_ng_n = Tf$, implying

$$\begin{split} c_{i} &= c_{1}g_{1}(\alpha_{i}) + \ldots + c_{n}g_{n}(\alpha_{i}) \\ &= (Tf)(\alpha_{i}) \\ &= u(\alpha_{i})f(h(\alpha_{i})) \\ &= u(\alpha_{i})f(h(\beta_{i})) \\ &= \frac{u(\alpha_{i})}{u(\beta_{i})} (Tf)(\beta_{i}) \\ &= \frac{u(\alpha_{i})}{u(\beta_{i})} \{c_{1}g_{1}(\beta_{1}) + \ldots + c_{n}g_{n}(\beta_{i})\} \\ &= 0 \end{split}$$

for each i=1,...,n. It follows that T has an infinite codimension since n is arbitrary, a contradiction. Consequently, \tilde{h} must be injective, K=Y, and h is a homeomorphism of Y onto X. If for any $g\in C(Y)$, we set

$$f(x) = \frac{1}{u(h^{-1}(x))} g(h^{-1}(x))$$

for each $x \in X$, then we obtain that $f \in C(X)$ and Tf = g, so that T is surjective.

(ii) \Rightarrow (i). Let ϕ be a continuous map of Y onto X which is not injective. Then we have to show that the set

$$\{(y_1, y_2) \in Y \times Y : \phi(y_1) = \phi(y_2), y_1 \neq y_2\}$$

is infinite under the condition (ii). If not, then all $\phi^{-1}(x)(x \in X)$ are non-empty finite sets, and also $\{x \in X : \operatorname{card}(\phi^{-1}(x)) \geq 2\}$ is a non-empty finite set, say $\{x_1,...,x_n\}$, where "card" denotes the cardinal number. Set

$$(T_{\phi}f)(y) = f(\phi(y))$$

for each $f \in C(X)$ and $y \in Y$. Then T_{ϕ} is a linear isometry of C(X) into C(Y) and since ϕ is not injective, it follows that T_{ϕ} is not surjective. Put

$$A_{\imath} = \left\{g \in C(Y): g \text{ is constant on } \phi^{-1}(x_{\imath})\right\} \quad (i = 1, ..., n)$$

and

$$A = \left\{ g \in C(Y) : g \text{ is constant on } \bigcup_{i=1}^{n} \phi^{-1}(x_i) \right\}.$$

Then $A\subseteq\bigcap_{i=1}^nA_i$, and hence $C(Y)/\bigcap_{i=1}^nA_i$ is isomorphic to (C(Y)/A)/I, where $I=\{g+A\in C(Y)/A:g\in\bigcap_{i=1}^nA_i\}$. On the other hand, $T_\phi(C(X))=\bigcap_{i=1}^nA_i$ since the inclusion

 $T_{\phi}(C(X)) \subseteq \bigcap_{i=1}^{n} A_i$ is trivial, and the reverse inclusion follows immediately from Lemma 2 Also by Lemma 3, C(Y)/A is isomorphic to a quotient of $C(Y_0)$, where $Y_0 = \bigcup_{i=1}^{n} \phi^{-1}(x_i)$ Consequently,

$$\begin{split} \operatorname{codim}(T_\phi) &= \dim(C(Y)/T_\phi(C(X))) \\ &\leq \dim(C(Y)/A) \\ &\leq \dim(C(Y_0)) \\ &\leq \sum_{i=1}^n \operatorname{card}(\phi^{-1}(x_i)) \end{split}$$

Hence T_{ϕ} has a finite codimension, and so must be surjective by the condition (ii) But this is a contradiction, so the implication is proved

ACKNOWLEDGMENT. The authors thank the referees for helpful comments and for improving the paper. The second author was partially supported by the Grant-in-Aid for Scientific Research from the ministry of Education, Science and Culture in Japan.

REFERENCES

- GUTEK, A., HART, D., JAMISON, J and RAJAGOPALAN, M., Shift operators on Banach spaces, J. Funct. Anal. 101 (1991), 97-119.
- [2] HOLSZTYNSKI, W., Continuous mapping induced by isometries of spaces of continuous functions, Studia Math. 124 (1966), 133-136.
- [3] HOLUB, J.R., On shift operators, Can. Math. Bull. 31 (1988), 85-94.