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Let E be a locally convex topological vector space and C’ a non-empty subset of E. A t,al)ping
p: (? E [0, co)is a convex map ill" for each fixed :r (:, Z,(.r,-): E (0, co)is , ,,,,v,.x

function. For x C, the inward set It(x) {x + ,’(y x): y C,," > 0}. Browder [1] proved the
following extension of the Schauder’s fixed point theorem.

THEOREM 1. (Bvowdev). Let C be a compact, cotvex subset of E and f (!

a continuous map. If p: C E [0, co) is a continuous convex map satisfying

(I) for each x f(x), there exists a y It(x) with p(z, f(x) y) < p(x, f(x) x), the,, f ba. ,t

fixed point.

It may be stated that the importance of Theorexn 1 stems froIn p being a continuous convex

map instead of a continuous seminorm on E. In this paper, we use the KKM principle to obtain a

result on the ’best approximation’ that yields Theorem 1 with relaxed hypothesis on compactness.

Let X be a non-empty subset of E. Recall that a mapping F X 2F is a KKM map if

F(x) # 0 for each x X, and for any finite subset A {x,,x,...,x,,} C_ X,C’0(A) U{ I"(.,’,):
1,2,..., n}, where Co(A) denotes the convex hull of A. Observe that if F is a KKM map, then

x F(x) for each x X.

It is shown by Fan [2] that if F X 2E is a closed valued KKM nap, then the family

{F(x):x X} has the finite intersection property.

As an immediate consequence of the above result, we have:

LEMMA 2. If X is a non-empty compact, couvex subset of E attd 1" .\ 2E is a

closed valued Kh’M map, then fq{F(x) x X} # O.
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PROOF. Define a map G X 2x by

:(.) !"() X.

Then G(x) is a nonempty compact subset of X and (; is a KKM map. Consequently, i,y [2],
{G(x) x ( X} has the finite intersection property. Since X is compact, it follows that f3{(/(.r)
x E X} O, and hence, tq{F(z) x E X} - O.

The following lemma is essentially due to Kiln [3]. We give a proof for completeness.

Note: In the following, C0(A): stands for the closed convex hull of A.

LEMMA 3. If A and 13 arc compact, convex subsets of E, then C0(A tJ 13) ,s a ,’,,,,,I,,,,’t,
convex subset of E.

PROOF. Since A and B are convex, ’it follows Co(A U B)
B, A, tt [0,1] and A + tt 1}. Clearly, C0(AU B)is a closed and convex subset of E. To show tl,at

Co(AU 13)is compact,let C [0,1] x [0,1] A B na D {A+ t,:-
Then C is a compact subset of Y [0, 1] x [0,1] x E x E in the product topology on Y. Further, the
mapping f" Y E defined by f(A, it, x, V) Az + try being continuous, it follows that !) f((,’)
is a conpact subset of E and, hence, C0(A U B) C_ D is compact.

LEMMA 4. Let X be a non-empty convex subset of E and F" X 2E a closed valu,,!

Kh’M ,,tap. If there exists a compact, convex set S C_ X such that 3{F(x) x S} is no,t-,’,,,pt!
and compact, then C){ F(x) z X # .

PROOF. Let C 3{F(x) x E S}. Then C is non-etnpty and a compact subset of
E. To prove the lemma, it suffices to show that the family {F(x) C’ z X} has the finite
intersection property. ’1o prove this, let A be a finite subset of X. Then Co(A) is conpact and by
Lemma 3, D Co(S U C0(A))is a compact and convex subset of X. Consequently, by Lemma 2,
t3{F(z) z D} # O. This implies that {F(x) t3C z A} # O. Thus, {l"(x) C)(: .,: X} has
the finite intersection property. Since C is compact and l"(z) is closed for each :r. ( X, it h,llows
that {F(z)t3 C z X} # . This implies that t3{F(z):z X} # .

Let X be a non-exnpty convex subset of E and p" X x E [0, cx)) a convex map. A malping
g X X is a p-afline map iff for each triple {z,z,z2} C_ X,y E, and A,# ( [0,1] with

A+It=I,
p(x,V g(Ax, + ktx2)) _< max{p(z,y g(z,))" 1,2}.

Note: If g is linear or aft’me in the sense of Prolla [4], then p being convex, it follows that 9 is l-afline
in the above sense. It is immediate that if g is p-affme, then for any finite set A {z,x2,... ,z,,} C_
X and Ai _> 0 with ’= Ai 1,

p(x,y g( A,x,)) <_ max{p(x,y g(xi)) 1,2,...,,t}

for each

The following is the main result of this paper.

THEOREM 5. Let X be a nonempty convcx subset ore and p X x E [0, oo) a

continuous convex map. Let f" X E attd g X X be continuous mappings with g p-aJflnc.
Suppose there exist a compact, convex set S C_ X and a compact set K C_ X such that

(2) for each y X\K there exists an x S such that p(y, f(y)- g(y)) > p(y, f(y)- g(x)). 7’hcn
there exists a u X that satisfies

(3) p(u,f(u)- 9(u))= inf{p(u,f(u)- 9(z)) z e X} inf{p(u,f(v)- z) z e cl Ix(9(u))}.

PROOF. We first prove the left equality. For this, we define a mapping G X 2x by

G(z) {y X: P(Y,f(Y)-g(Y)) <- P(Y,f(Y)-g(x))}
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Clearly, x E G(x) and it follows that G(.c) is closed for each x E X. We show that (; is a KKM map.
Let y Z:’_-, .\,.r,,A, 0,:’=, A, 1,x, .\" for each . Suppose y . U{(;(.r,),, 1,2,...,,,}.
Then for each 1, 2,..., 7z,

p(y, f(y) g(y)) 3> p(y, f(y) g(x,)).

This imphes that p(.q,f(y) g(y)) P(Y,f(!I) g(,:’_-, A,x,)) _< ,nax{1,(!l,f(!l) .q(.,’,)).,
1,2,...,,z} < I’(Y,f(Y)-g(y)). This inequahty is impossible and, consequently, y U{t;(.r,)

1,2 ,n}, that is, G is a closed valued map. Now, since S is a compact convex subset ,,f

X, it follows by Lemma 2 that C {G(x) x S} is a nonempty closed subset of X. We
show that C N. Suppose y C and assume that y XIf. Then by hypothesis there ex-
ists an x S such that l’(:/,f(!/)- :/(Y)) > l’(Y,f(y)- 9(.r)). This implies that ,/ (;(,’) f,,r

z S and, hence, C, contradicting the initial supposition. Thus, (’ h" and, hcnce,
{G() .r S} is a nonempty compact subset of K. Hence by Lemma 4, {(;(.r)’.r X} ,.
If u {a(z) x X}, then for each x X, p(u,f(u)- g(u)) S 1,(u,f(u)- g(.r)). F,,rther,
since u X, it follows that p(u,f(u)- g(u)) inf{p(u,f(u)- g(x)) X}. This proves
the first equity in (3). To prove right side of the equMity in (3) we first show that fl,r each
z Ix(g(u))X, p(u, f(u) g(u)) 5 p(u, f(u) z). Now z lx(g(u))X i,nplies that there is a

’- + (1 })g(u). Hence, by the first equality and p being convex,X and r > such that y=
_

it tonows that Z’(", f()- a(")) 5 P(’, f()- ) 5 }Z’(, f(")- )+ (1- )V(", f(")- ’(")). that
is, p(u, f(u)- g(u)) p(u, f(u) z) for each z Ix(g(u))X. Since the last inequality is also
true for any z X, it follows that p(u,f(u)- S/(u)) p(u,f(u)- z) for each z Ix(q(,)).
Further, since the fuaios f,, ad p are continuous and g(u) lx(.q(u)), it follows that
p(,,,f()- ()) if{p(,f() ) d (x(g(u)))}. This proves the second equality in
(s).

As a simple consequence of Theorem 2, we have

COROLLARY 6. Supposc X zs a compact, convex subsct of E,p" X i
a co,zlznuous convex functzon and f X E a contz,tuous function. ’l’hc,t for any
p-aJfiue map g" X X, there ezists a u X that satisfies (3). Furthcr,

(i) zJ" f(x) cl (lx(g(x))) for cach x q X then p(u,f(u)- 9(u)) O,

(ii) if fo," ad X, ,oah f() () th, c (6,(’(-,))) ’’ that V(’, f(.’:)-:) <
p(x, f(x) g(x)), thc,t f(u) g(u).

PROOF. Set S K X in Theorem 5. Since X\K , condition (2) in Theorem 5

is satisfied. Hence, there is a u E X, that satisfies (3). Clearly, (i)imphes p(u, f(u)- .rt(,t)) O.
To prove (ii), suppose f(u) : 9(u). Then by hypothesis p(u, f(u)- z) < p(u, f(u)- 9(u)) for some

z cl (lx(9(u))). The last inequahty contradicts (3). Hence, f(u)= 9(u). E]

It may be remarked that if g is the identity mapping of X, then Corollary 6 yields Browder’s
Theorem 1 and also extends a recent result of Sehgal, Singh, and Gastl [5] if f therein is a single
valued map.

For the next result, let P denote the family of nonnegative continuous convex futtctions on

X E. Note if p and p. P, then so is p + p2. Also, if p is a continuous seminorm on E, then
generates a nonnegative continuous convex function on X E defined by 13(z, y) p(y). A mal,l,ing
g X X is P afline if it is p-afllne for each p P.

The result below is an extension of an earlier result of Fan.

THEOREM 7. Let X be a compact, convcz subset of E and f" X E a cont,uous

function. Then for any continuous 19 affine map g" X X,

() ezther f(u) g(u) for some u X,
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(5) or there czists a p P and a u X with 0 < p(u,f(u)- 9(u)) inf{p(u,f(,t)- z): z E

In pa,’ltcular, tf f(x) E cl (]x(g(x))) for each x, then (5) holds.

PROOF. It follows by Theorem 5 that for each p E P there is a u up .\" such that
p(u, fu-gu) inf{p(u, f(u)- z): z cl(Ix(g(u)))}. If for some p, p(u, f(u)-g(t)) > 0, then (5) is
true. Suppose then, p(u,f(u)-g(u)) 0 for each p P. Set A. {u X: p(,,,f(.)-q(.))
0}. Then Av is a nonempty compact subset of X. Furthermore, the family {Ap p P} has the
finite intersection property. Consequently, there is a u X that satisfies

(6) 1,(u, f(u) g(u)) 0 for each p e P.

If f(u) # g(u), then since E is separated, there exists a continuous seminorm 1’ on E such that
p(f(u)- .q(u)) :# 0 and, hence, (u, f(u)- g(u)) > 0, contradicting (6). Thus, f(u) ,g(u). llence,
(5) holds in the alternate case.
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