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ABSTRACT. In this paper, we study the existence of global weak solutions for the equation

k(x)u" + k,(x)u’ + A(t)u + u u f (I)

in the non-cylinder domain Q in R"+I; k and k are bounded real functions, A(t) is the

symmetric operator
n 0 (a.3(x,t) O)A(t)=- ,

i,3=

where a,3 and f are real functions given in Q. For the proof of existence of global weak solutions

we use the Faedo-Galerkin method, compactness arguments and penalization.
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INTRODUCTION AND TERMINOLOGY.
Let T _> 0 be a positive real number, O a bounded open set of R" and Q c O x [0, T) a non-

cylindrical domain in R" + .
In the cylinder x(0, T), where ft C N" is a bounded open set, Bensoussan et al. [1] and

Lions [7] have studied the homogenization for the following Cauchy problem:

k(x)u" + k,(x)u’ + Au f in gt

(II)
u(x,O) Uo(X and k(x)u’(x,O) k/(x)u,(x),x f

Many authors have been investigating the solvability of solution for the nonlinear equations
associated with problem (I)see: Larkin [4], Lima [5], Medeiros [9], Medeiros [10], Medeiros [11],
Melo [12], Maciel [13], Neves [14] and Vagrov [16].

In the non-cylindrical domain Q, Lions, J.L. [8] studied the existence and uniqueness of
global weak solutions for nonlinear equations associated with problem (II) with nonlinearity of
type ulu.

Let F/t=Qf’l{t=s} be a plane in " +. Analogously fl0=Qfq{t=0} and

fr=OC{t=T};OO=r the boundary ot Q;r,=oQfq{t=s} the boundary de f. and

= U0<,<TF lateral boundary of Q. Therefore Q is a subset of O(0, T) whose boundary is

f0 Cl Cl fr
Let’s denote by (.,.) and the inner product and the norm in L2(fl) and by ((.,.)) and
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tho inn,, pro,l,ct an,l norm in H,(). W,, i,lontifv L(t) and H,’,(,) th,’

L(O) n,l H(O) r{’slectiv,’h’. V 0 T.

W’ dofino L’(O.T;L(Qt)) to 1{’ the 1},,’{ t,f fimctions ’ in Lv(I.T:L2(())) sm’h that ,(t) in

L(t) a.e. on t, fi)r 5 P 5 . By analogy we dofine Lv(O.T:H(t)).
In this work w, stlx" the following prolhn Lot f,k.k. ,, , 1,, ,’ti in

spaces. Vo want to fin,l tho function u:Q su h that-

k(.r)," + k(.,’),,’ + A(I), + ],, [",, f in Q. with 1) < p 6 N. wh,’r"

,(.r. O) uo(O). ,t.r. 0) ,(.r) in Qo

A(t) a,.,(.r.t) with (, in Q
,,j=l

We use Faedo-Galerkin’s method and compatnoss arguments, see Lions..I.L. [7]
1. ASSUMPTIONS AND MAIN RESULT.

If we assume the following hypothesis:

(H.1) Let be the projection of the , ,)n the hyperplane 0. We may assmn, 7 C 2 if

(H.2) For each [0,T],fl, has the following regularity: If u H(O) and

a.e., then the restriction of u to Q belongs to H(Q).
On the flmctions a,k and a, we take:

(n.a), e (,); ,(z) k > 0,a e a: t-(. k 0 for ,h e [0, r].
0

There is 0 < 6 N such that

%(x,t),26(l11+ + I,l),(’,t)eOxtO, T),=(,,
z, 3=l

Let a(t,u,v) denote the bilinear form associated to the operator A(t) Froxn (H.4) and, umng

Cauchy-Schwartz, we obtain:

Also by Poincar-Friedrichs inequality and of (H.4), there exists a > 0, real, such that"

Therefore, from the above inequalities, we conclude that a(t, .,-) i continuous and crcive

in H(O) x H(O).
Now lets consider the mNn result.

THNOM 1. Suppose the hypothesis (H.1)-(H.4) are satisfied and that

f e r2(O) (1.1)

o e n(no) (1.2)

1 L2(flo) re given with 0 < < 4 (1.3)

Then there exists a function :Q such that

u’ e L(O,T;L2(n,)), 2(x)u’ L(O,T;L2(nt)) (1.5)

k(z)u" L’(O,T;H-(,)) with + 1, p p+2 and u (1.6)

is a solution (1) in the weak sense in Q, i.e.,
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d (..(x),,,(t).,,) / (,(),,(t), ,,) / .(t..(t).,,) / .(t)I ,,(t), ,,) (f(t). ,,),
dt

in D’(O,T),Vv H)(fl,).
u(.r,O) .o(.r); t’2(.r).,(.r,O u, in flo

(1.7)

(.s)

PROOF. The idea is to transforni, th(. non-cylin(lel 1)ro])h’ni in the (vlin(ler I)roblem,

through the penalization flmction. M L’(Ox(O,T)), that was introdu(’(’d by ,J.L. Lmns

given by:

] O, in Q
M(x,t)

1, in O x (0, T)Q.

For each e > O, we will find U’ in the cylinder 0 x (O,T), solution of the perturbed problem

(P,) below

k2,(x)U,t+kl(X)u;+m(tJu’+lMU+ IlU’llU (1.9)

u’(0) o (.0)

U 0in the c3(0 (0, T))

(_

where k2,(x) ’(x) + ; U U; Utt -Therefore, 5o H(O). Analogously 51 L2(O);

in flo
in 0\o

f, in Q= 0, inO(0, T)\Q;

Therefore )" L(Ox (0,T));

]q(x) {(x)inQin O x (O,T)\Q
and :(x)=(2(x) in Q

in 0 x (0, T)\Q

So 1 and :2 L(0 x (0,T)).
The proof of Theorem will be a consequence of the following Theorem:

THEOREM 2. For each e > 0, there exists one function U,:O (O,T)--N, solution of the

problem (P,), such that:

U" L(O,T;H(O)) (1.13)

U" e L(O,T;L(O)), ,(x)U L(O,T;L:(O)) (1.14)

c2,(x)Uh LV(O,T;H- ’(O))

with +=landp=p+2
]%,(x)Ut, + ]q(x)V + A(t)U + MU + U*IaU }

in the weak sense in O x (0,T).
u’(,0) o()

(1.15)

(1.16)

(1.17)

()ui(,o) ()%() (1.18)
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REMARK 1. The condition U’ =0 in is a consequence of the fact that U’ iu

L2(O,T;Ho(O)).
REMARK 2. For the proof of Theorem it is sufficient to prove that the solution U’ in

Theorem 2 converges for U in the weak scl.e when e--0 and that the restriction of U to Q
satisfies all the assertions of Theoren 1.

In this part, we use a result due to W.A. Strauss see [15].
PROOF OF THEOREM 2.

(i) Approximate Problem. It will be done by the Faedo-Galerkin method. Let

{wv}uu= C HI(O) be a basis of Hi(O) and V,, the subspace spanned by the m first vectors

w,w2, -,w. Let UL be the function

U(x,t)= g.,(t)%(x)
3=1

defined by the system

0(:2(x) - U(t), %) + (](x) fit U(t), %) + a(t,U(t), Wj)

+ M( U(t),w)+ U(t) O,w’ (f(t),w), j i, ,m

U2(0)=U0= oj,,wsfio strong in HI(O)

(1.19)

(1.20)

O__ot U(O) U,, y ,,w strong in L(O) (1.21)

The system (l.19)-(l.2l) satisfies the condition of Caractheodory’s theorem see [2].
Therefore it has a solution U defined in [0, t,,), where 0 < t,,, < T. The a priori estimates to be

obtained in the following step, show, in particular, that t,n T.

(ii) A Priori Estimates. By multiplying both sides of (1.19) by 2g,(t), and adding from

j 1 to j rn we obtain:

O

+ -f u(,)II U.(,)U’()d .(}(t),u’(t)),
0

where we wrote U instead of U, and denoted by U tt U,n.
REMARK 3. We have that

(1.22)

d a(t,U,.(t),U.(t))= a’(t,U.(t),U,.(t))+ 2a(t,U,.(t),U’(t));dt
where

0a’(t,U.(tl, U..(tl) a’(t,U(tl) i,3=1 a,3(x,t)
Therefore,

o

2a(t,U(t),U(t)) at
dt ’ U(t)) a’(t, U(t)).

MA 4. We have that f Um()lPdx f Ig(s) - 1. Um(8. g($)dz
I u()1 u() U2()d.

o o u(,)

0
Therefore, in the remks (3 d 4) below, we have, integrating (1.22) from

0 < , that:

0 O
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(1.23)

2_/IUo.,["
o o o

REMARK 5. From (20). (21) and the Sobolev hnmersio,,, H’(O)I+P(O).V 11-+-2 wc

obtain:

Uo,,, ,"(ol < c.

Here, the letter C denotes different constants.

REMARK 6. By using (H.4), we obtain:

0 0

Therefore, from the remarks (5 and 6) below, we can write (1.23) like

0 0

0 0 0 0

From (t.2+), tf w+ chmse A > 0 (the > 0 of H.3) we obtNn:

0 0
and

], ]t },

0 0

Being a(t, u, v) coercive, we obtain from (1.25) and (1.26), that:

IIU,.(t)ll <_C+Cf’ll,,,.(+)ll+d+, Vt e[O,t,,.).
0

Gronwall’s inequality implies that

IIV;.ll _<C, Vmem, W>O,

Returning to (1.25) we obtain:

0
Vm e N, V+ > 0, V+ e [0,

The priori estimative (1.24) shows that t,,, T. Therefore,

0

0 0 0

Vm E N, V+ > 0 and Vt e [0,T].
We obtain from (1.28), (1.29) and (1.30) the estimates,

(1.24:)

(1.25)

(1.26)

(1.27)

(1.28)

(1.29)

(1.30)

<C, VmeN, e>0.v ++(0, +; H’o(Ol> (1.31)
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’U’n L2(0, T; L2(O)) (1.32)

t <c, V,-,,EN, W>O2, U. L(O T; L2(O)) (1.33)

(1.34)

where C is a constant independent of m 6 I and > 0.

By the estimates (1.31)-(1.34), there exist a subsequence of (U<,,), still denoted by (U,,), and

a function U such that

U, U weak-star in L(O,T;H(O)), (1.35)

0-7 U, weak in L2(O,T;L(O)),

M t U. M t U( weak-star in L(O,T;L2(O)).

THE NONLINEAR TERM.
i 1, we obtainBy (1.30) and noting that _lp + p’

u’ i’>u’ ii’>’" i W’ (’>/iWax i U’’n <P-I)P’x i V’n Pdx <’-
which implies:

Ul’>U (0, T;
_C, VrnEl, Ve>0.

From (1.31), (1.32) and the Aubin-Lions Theorem (see [7])we obtain:

Ul.U-> u< I,’U a.e. in O x (0, T),

and

(1.36)

(1.37)

(1.38)

(1.39)

Ul,U<,,,->w weak-star in L(O,T;LP’(O)) (1.40)

The difficulty is to prove that W U<i>U. This is a consequence of the following result

due to W.A. Strauss (see [15]).
LEMMA 1. Let Q be a bounded open set of R". Lets g,, and g 6 LP(Q), < p < oo satisfy

the following conditions:

(i) g,,---g a.e. in Q

(ii) g,, LP(n) --< C, Vm 6 N.
Then

(iii) g,,g strongly in Lq(l%), 1 <_ q < p

(iv) a,-a wy i, i().
Lemma 1 with q 4-7 p’;fl=Ox(O,T) and g,,= IU,,I" U,, we obtain from (1.38) and

(1.39) that

U’,,, "U’,,--- U" "U weak-start in L(O,T;LP’(O)) (1.41)

and consequently weak in L’(0, T; LP’(O)).
By multiplying both sides of (1.19) by 8 6 C(0, T), integrating from 0 to T, passing

to the limit and using the convergences (1.35)-(1.37), (1.41) and noting that {w}= is a basis of

H(O), we obtain:
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/T(k,(x)-U(t) v)dt +/T(k(.r)U(t),v)dt +/Tn(t,U’(t),v)dt +
0 0 0

0 0 0

(1.42)

Vv E H(O), V e C’(O,T).
Then, fro,,: (1.35)-(1.37) and from (1.42), we obtain /Y satisfying (1.9)-(1.10) and (1.12).

Noting that

L2(O, T; L2(O))L2(O, T; H ’(0)),

we obtain

luui ’l(:c)’ L2(O,T;H- I(O)).
0 U’(t) L2(O) implies thatThe fact that a,(x, t)

En -O (a,,(x,t)-,O U,)L2(O,T;H-(O))
i,j=l

(see [31). Also from (1.16), (1.41) and j" e L2(O,T;L2(O)) we obtain

:2(x) U( L2(O,T;H-t(O)),

which proves (1.15).
The estimates (.3)-(.34) and (.38) are independent form e >0, we obtain the same

convergences (.35)-(.3) and (1.41) by changing U by U and U by W. Therefore, we have

UW weak-star in L(O,T;Ho(O))

UiW, weal: in Lz(O,T;LZ(O))

(1.43)

(1.44)

y/k,(x)U, V/(x)Wt weak-star in L(O,T;L(O)).

Note that y/k2(x) y/2(x) + effkz(x) strong in L:(O,T; L:(f)).

U’I"U WI’W weak-star in L(O,T;U"(O))
Also, we obtain the essential estimates:

M(Ui)dxdt < Ce.
0 x (0, T)

From (1.44) we have: M(U)2--.M(W,) weak in L(O,T;LZ(O)).
Therefore, from (1.47) we obtain

(1.46)

(1.47)

M(W,)2dxdt =0.
0 (o, T)

From this and the definition of M, we deduce: W 0 a.e. in O x (O,T) D Q. Consequently

W(x,t) is constant in the variable in Ox(0,T)DQ. Being W(z,O)=fo(X) in O, we conclude

that W(x,O)= 0 in O\f0. From this and from (H-l), we get:

W(x,t)=O a.e. in O x (0,T) DQ. (1.48)

We conclude from (1.43) and (1.44) that W(t)c: H(O). Let u be the restriction of W to Q.
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Then froxn (1.48) and (H-2), we obtain that u L(O,T;H(Qt)); which proves (1.4) in Theorem

1. Moreover, from (1.44) and (1.45), we conclude that u satisfies (1.5).
Let U be the restriction of U to Q. Then, restricting the equation of Thoorem 2 to the

domain Q, we obtain"

((x)’,(,), ,,)+ (,(.)(), ,)+ (t,’(t). ,) + $(U(t), ,,)+
(1.49)

Vv e H(O), in the sense of the D’(O,T).
By taking the limit when e0 in (1.49), and using the convergences (1.43)-(1.46) we get"

K ((.),,,(t). )+ (.,(..).,(t), ,)+ .(t, (t), )+(] (t); .,,(t), ) (f(t),,,),dt

in D’(O,T),Vv H(Ft,), which proves (1.7).
The proof of (1.6) is analogous to (1.15) of the cylinder problem.

(iii) The Initial Conditions.

Let a C’([0, T]; R) be such that a(0) and a(T) 0. We have

0 0

By passing to the limit in the above equality and using the convergences (1.20), (1.35) and

(1.36) we obtain:

0 0

Integrating by parts the last integral above, we conclude that

(u(0), ) (,,0, ),w e L(O).

From this it follows (1.17). The initial condition u(x,0)= Uo(X of Theorem is done

analogously.
Finally, we will verify condition (1.18). Initially we verify that [(k2(x + e)Vt](0) does make

sense.

Let U be a solution of the perturbated problem. Then

foT<[c2(x)U(t),O’(t)v) dr+ foT([cl(X)U(t),O(t)vl dt + " \lT(A(t)U"(t),(t)} dt +
0

Vv H(O) and ’0 C(0,T); where < .,. > is the duality between H(O) and H-’(O). So

f c,,(x)Vt(t)8 (t)dt + fT,(lV;(tlO(tldt +
o o

fT A(t)U’(t)8(t)dt + fT MUi(t)8(t)dt +
0 0

0 0

Vv H(O) and VO C(O, T).
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Therefore, we haw

< -’,(.r)U(t),’(t)> + < ..(,r)’;(t),O(t)> + < A(t)lr’(t),O(t) > +

< MU;(t),O(t) > + < IU<(t) lU<(t),(t) > < (),(t) >.

VeC(O,T); whrc, hcrc <., > denotos the vectorial (listril)tion of (0, T) in H-(O)
evaluated in scalar test application of (O,T). Being ’, E L(Ox (O,T))and U; E L(O,T:L(O)),
we have -’,U La(O,T;La(O)).

--U, defines a vectorial distribution of (O,T)in L2(O), whose derivative is:

Therefore,

Or,

< -1,2,U’, > < (k,Ut),,O >, VO 6 C(O,T).

. . A(t)U,O< (k2Ut)t,O> + < kl t,O> + < > +
< .MUL 0 > + < UI"U, 0 > < (f, 0 >, VO C(O, T).

(2,U,),-4- kl[ -4- A(t)U’ + e , + Z,
in L*(O,T;H-’(O)). As ,,U,MUL IUoUe L(O,T;L(O)) and A(t)U’ e L(O,TH-’(O)),
we obtain, from the lt equality above that: L2(O,T;H -1(k2,Ut), (O))L (O,T;H (0)),
which proves (1.15) It is ey to see that k[, C([O,T];H ’(O)). Therefore, [,U](0) mes
sense. Let now 0 Cl([0, t]);N) b sh that 0(0)= and O(T)= 0. Then,

[. T,:2,( U(t), v)8(t)dt v

0

From this and taking v w, in the approximate equation, we obtain:

--(k2 U,n(0), v) /T(’2 Urn(t),v)Ol(t)dt Jr/T(; Um(t),t))8(t)dt .Jr
0 0

0 0 0

0

By passing to the limit in the above equality and using the convergences (1.21), (1.35)-(1.37)
and (1.41) we obtain:

0 0

/Ta(t,U,(t),v)O()d +/r (1_6 MUd(t), v) O(t)dt +
0 0

/ T( U’(t) laU’(t), v)a(t)dt / T()(t), v)O(t)dt,
0 0
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As fTo(’,r;(t),’))’(t)dt < ("l,,Ut(t))t,v>O(t)VveV,, an(1 0eC’([0. T];I)such that

/9(0) and 0(T) 0, w(. have. using the fact that U’ is solution of the 1)(’rturl)(’d equation, that:

Or

< V/’2,(.r);,. , > + < ’2,(.r)U’(O), , > O, V,, V,,,.

Vt, H0(). This proves (1.18) and, therefore, the proof of Theorem 2 is complete.
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