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ABSTRACT “The purpose of this note s to study modifications of the Enchidean metric on IR with the following

property  There i a monotone sequence of cosed balls with empty mtersection
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1 INTRODUCTION

DEFINITION T We call a function £ IR¥Y — IRY etnie preserving ff f(d) - M x M — IR* 1s a metric for
every metrie d M ox M — IRY where (M, d) s an arbitrary netne space and IR denotes the <ot of nonnegative
reals. We denote by M the set ol all metnic preserving functions (See Borsik [1], Borsik [2], Terpe [3] )

The following result 1s well known (see Borsik [1], Terpe 3])

PROPOSITION 1 1f f IR¥Y — IR* 1< a concave funchion vamshing exactly at origin then it s metrnie
preserving

1t s well known that there s acomplete metrie space with the following property

There 1s a monotone sequence of closed balls with empty intersection. (1.1)
In Juza (4] such a metric space (which 1s not discrete) has been constructed by a modification of the Euchdean
metric on IR, where IR denotes the set of reals

For each f € M denote by dy the metrie on IR defined as follows
dy(r,y) = f(lr —y]) foreach r oy IR

We call dy a modification of the Euchdean metric on R (See Terpe (3])
EXAMPLE 1 Define f: IRY — IRt as follows

J(F)=r. tr<2,f(r)=14 -l—l—lfr‘)‘z
r-

In Juza [4] it is shown that f € M and the metnie space (IR, dy) has the propeity (11) The proof of (1 1) 1s based
on the following property of the metric space (IR, dy):

For each compact set. " there 1s a closed ball S and there s acompact set 1osuch that K C IR =S C 1L (12)
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2 MAIN RESULIS

THEOREM 1 Let f € M Suppose that there are g b IRY < IRY <uch that g b are nomnereasing, and
they are not coustant i each neyghborhood of the pomnt § o~ 21)
g(r) < f(r) < h(r) m some neighborhood of the pomt . (22)

iy ey g(2) = g g () (23
Then the metric space (IR, dy) has the property (1 2)

PROOF Let m € IN be such that g(r) € f(#) < h(r) for each 2= [no~0) Patd = g cp-g(r) Bvadently
d = lm,__pn, f(2) >0 Let N obhe acompact set Pt v = mf K-, r = sup N -« ¢ = g(r) Smce gas
not. constant on (r, +2¢), there 18 & > r such that ¢(§) # ¢ Smee g 15 nommereasing, we have € # (&) < g(r) =€

‘Therefore g(€) < € Since g1« nomnereasing for each + > € we get g(r) < g(€) ‘Thusd = hin, 4o () < y9(€) <€
Let r € (. r] Then f(r) > g(r) > g(r) = ¢ Therefore

Voo finr] flr) ~¢ (21

Let 8 € (dog) Smee han, - oy h(e) = d < e, thereas £ >0 such that h(t) < & Let 2 >t ‘Lhen f(r) < h(r) <
h(t) < & 'Thus
Vre[t.~) flr)y<é (25)

Let S be aclosed ball with the centre s and the radime 8 Put L = [s =, s 4+1] Now, we shall show that A C IR-5.
Let w € K Then |u—s| = u—s € [m.r], and by (24) we get dy(u,s) = f(lu—s]) > e > 8 Therefore u ¢ S
Fiually, we shall show that IR =S C L. Let v € IR =5 Then f(Jo —s]) = dg(v.s) > 6. By (25) we have |v—s| < 1.
Therefore v € L.

EXAMPLE 2 Define f IRY — IR* as follows

L4 r+sin®(x = 1)

o Ll € [1,00)

[ty =rafre(ol) f(x) =

It is not difficnlt to verify that f € M and the metnic space (IR, dy) has the property (1 2) (which yields also the
property (1.1)), however [ is not monotone on every neighborhood of the point 400

EXAMPLE 3 Define [ IRY — IR* as follows, f(r) = s afr €0, 1], and f(r) = $(r - 3n+ 1= |r—3u+
Htlz=3n+ i+ 5l+lr—3n—§— g5 fre@n=23n+1)(n =123 .) Itisnot dillicult to verify
that f € M and (IR, dy) is a metric space with the property (1.1), which has not. the property (1.2). Indeed, the
intersection of the sequence of closed balls {S,}%, (where S, has the centre £, = 3 (2"~!' = 1) and the radius

€n = % + 2"I+l) is empty.

A characterization of metric preserving functions [ such that the space (IR, dy) has the property (1.1) remains

an open question.
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