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ABSTRACT. The am of the paper is to find suitable conditions so as to ultimately
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i. INTRODUCTION.

The problem of extending continuous maps on a topological space X to a given

extension X* of X has been dealt with extensively by many mathematicians. For example

it is known (see [2]) that a continuous map f X Y with Y a compact Hausdorff space

can be extended by a continuous map onto an extension X* of X iff for each pair of
-i -i

closed disjoint subsets A and B of Y, the closures of f (A) and f (B) in X* are

disjoint. One of the different interesting generalizations of this result arises when

continuity and compactness are replaced by e-continuity and quasi-H-closedness (QHC)

respectively under a suitably changed condition (see Rudolf [5]).

Bitopological versions of QHC spaces and e-continuous functions have been

introduced by Mukherjee [4], and Bose and Sinha [I] respectively. It is our purpose

here to further generalize the above extension theorem by Rudolf [5]. For this we

suitably modify and redefine the appliances used by Rudolf to ultimately establish the

existence and uniqueness of the extension of a pairwise e-continuous map onto an

arbitrary extension of a bJtopo]ogical space under certain conditions.

By spaces X and Y we shall mean bitopological spaces (see Kelly [3])(X,QI,Q2) and

(Y,PI,P2) respectively. For any AX, Qi-intA and Qi-clA will respectively stand for

the interior and closure of A in (X,Qi), where i=i,2. A set A is called an ij-regularly

open set (Singal and Arya [6]) if A=Q1-int Qj-clA, and complement of such a set is

called ij-regularly closed where (and also in future discussion) i,j=l,2 and ij. A

space X is called pairwise Hausdorff (Kelly [3]) if for x,y X with xgy, there exist

UQI and VE Q2 such that x U, yV and UV=.
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DEFINITION i. (see Bose and Sinha [I]) A function (or map) f (X,QI,Q2)
(Y,Pl,P2) is called ij-8-continuous if for each x6and each Pl-open neighbourhood

(henceforth nbd. for short) U of f(x), there is a Qi-open nb v of x with f(Qj-
clV)p.-clU, f is called pairwise 8-continuous if it is 12- as well as 21-8-

continuous

DEFINITIbN 2. (see Singal and Arya [6]) A subset A of a space (X,QI,Q2) is said

to be pairwise dense if every non-empty subset of X which is the intersection of a QI-
open set and a Q2-open set, has non-void intersection with A.

2. MAIN THEOREM AND ASSOCIATED RESULTS.

DEFINITION 3. A space (X*,QI*,Q2*) is said to be an extension of a space (X,QI,
Q2 if QI*/X=QI,Q2*/X=Q2 and X is pairwise dense in X*.

For an extension (X*,QI*,2*) of (x,91,Q2), a map f (X,QI,Q2)Y,PI,P2) and a

point x of X* (of Y) let Nx*l (reap. Nx) the family of all Qi*-open (Pi-open) nbds

of x in X* (reap in Y) for i=1,2 For xX*, N
i

(f,N shall denote the Pi-openx
filter on Y generated by the family{f(U X):UxE Nx*l } (i=l 2)

x
DEFINITION 4. A map f X--Y is ij-8-proper if for each x X*--X, NJ(f,N *J) has

x
non-void Pi-adherence, where (X*,QI*,Q2*) is an extension of (X,QI,Q2). The map f is

pairwise #-proper if for each xX*-X,[{Pj-clU UGN2(f,Nx*2P2-clUcaled
1)}]UE NI(f,Nx

THEOREM i. Let (X*,QI*,Q2*) be an extension of a space (X,QI,Q2) and f*:(X*,

QI*,Q2*)Y,PI,P2) be an ij-8-continuous extension of an ij-8-continuous map f

J)), for each x X*--X.XY on X*. Then f*(x Pi-clU:U N (f,Nx*
PROOF Let y f*(x) Pi-clU, for some U N (f,N *J). We consider the P.-open nbd

x

Uy=-P.-clU.o By ij-8-continuity of f*, there exists a Qi*-open nbd Ux of x such that

f*(Q.*-clU ) P.-clU Y-U (since u Pj), and hence f*(UxX)=f(Ux%X)Y-U. Since

UN x y

(f,Nx*J), U contains a set of the form f(Ux’X), for some Ux’ Nx*j" Now,

f (UxFX) f(Ux’X) (Y--U) U= implfes that f(UxUx’X)=, a contradiction

because X fs pafrwfse dense in X*.

i. Let (X*,QI*,Q2*) be an extensfon of a space (X,QI,Q2) and let f:(X,QI,

Q2)--(Y,PI,2). be an arbitrary map. Then for each .x X* and each

-cl f-I(p.-clU ): Uy N}.
PROOF. Let yPi-clU U N3(f,Nx*3. Then for each P.-open nbd U of y and each

x YU&NJ(f,Nx*j) we have Uy%U, i.e., Pj-ClUyU which gives Pj-ClUy’% f(UxX)
N
i

for each Uy Niy and. each Ux Nx J" For otherwise, Pj-ClUy f(UxX)#for. some Uy6 Y
,3and some Ux N

x
Then V=Y--Pj-clUf(UxX) and hence V N3(f,Nx*J) for which

VU_=, a contradiction. Now, f-l(p.-clU ) (U %X) and hence f-I(p.-clU_)/%U_,
Y Y x 3. Y

r ,3 m
fo each Ux N

x
and each Uy Ny. Thus xn{Qj*-cl f (Pj-ClUy) Uy Ny}. Reversing

the argument we get the reverse implication.

DEFINITION 5. Let (X*,QI*,Q2*) be an extension of a space (X,QI,Q2). A map f X--Y

is called ij-*-free if for each xX*--X, each y Y and each ij-regularly closed set

A in Y with yA, there exists a P.-open nbd U of y with xQj*-cl f-l(p.-clU )%Qi*-
-i

x y Y
cl f (A). The. map f is called pairwise *-free if it is 12- as well as 21-*-free. The

map f is called ij-*-proper if f is ij-8-proper and ij-*-free; f will be called

pairwise *-proper if it is pairwise 8-proper and pairwise *-free.

THEOREM 2. Let (X*,QI*,Q2*) be an extension of (X,QI,Q2). Then for each pairwise
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*-proper map f from X to a pairwise Hausdorff space Y, the set [Pl-ClU__
U N2(f,Nx.2)]- [n{P2_clv V NI(f,Nx*I)] is a singleton for each x X*--X.

PROOF. Let xX*--X. Since f is pairwise g-proper, suppose that y [%{PI-ClU_
U N2(f’N__--x"2)} ][nP^-clVz

Ve Nl(f,Nx*l)}]. By Lemma i, x [oe2*-cl f-l(P2-ClUy)
Uy N)][%{QI*-CI__ f-l(Pl-C]Uy):Uy N$}].__ We consider a point y’ Y such that

Y’M. Since Y is pairwise Hausdorff, there exists a P2-open nbd Vy, of y’ such that

P0-clV Now, f being 12-*-free there exists a P.-open nbd U of y such that
Y Y

Q*-cl f-l(p^-clU )e_*-cl f-l(p.-clV ,).Since xEOQ*-cl f-(P2-ClUy):Uy6 N,y)z
1

z y i +/- y z

XQl*-Cl f- (Pl-ClVy,) and thus y’P2-clV vNl(f,Nx*l) (by Lemma I).
-iLEMMA 2. For an ij-g-continuous map f:X--Y and U Pj, f(Qi-cl f (uk Pi-clU.

we are now in a position to prove the main theorem of this paper as follows

THEOREM 3. Let (X*,QI*,Q2*) be an extension of (X,QI,Q2). Then each pairwise g-

continuous, pairwise *-proper function f XY possesses a pairwise g-continuous

extension f*:X*-Y. The extension is unique if Y is pairwise Hausdorff.

PROOF. For x X we take f*(x)=f(x), and for each x X*-X we choose and fix a point

of [PI-ClU:U N2(f,Nx*2)}]n[P2-clV:VNI(f,Nx*I)}] and define it to be f*(x);

the latter choice is possible since f is pairwise g-proper.
We first prove that for each P.-open set U of Y,

-i
f*((x*-x)Qi*-cl f (P.-clU)k P.-clU

l
(2.1)

If not, then for some xX*-X, there exist a P .-open set U in Y with x (X*-X)’% QI*-
-i

clf (P.-clU)l but f*(x) (= y, say) Pi-clU. Since f is ij-*-free, there xists a Pi-
open nbd V of y such thatxQ *-cl -l(p .-clV)Qi*-clf l(p.-clU). Now since y

f*(xPi-clU U NJ(f,Nx*3) Lemma 1 gives xQj*-cl f-l(p.-clV) which implies
-i 3

xQi*-cl f (P.-clU)m contradicting the choice of x. This proves (2.1).

Now to prove the pairwise g-continuity of f*, we first consider x X. Suppose

f*(x) (= f(x)) y and let U be an arbitrary Pj-open nbd of y. By ji-g-continuity of
Y

f there exists a Qj-open nbd U of x such that f(Qi-clU ) P -clU i.e.,x x i y
-I

Qi-clU f (p.-clU) (2.2)
x m y

Define Ux* =U{u ej* u Ox Ux}which is a ej*-open nbd of x. Then using the pairwise

denseness of X we have

-i
Qi*-clUx* Qi-cl(Ux*X) Qi*-ClUxQi*-clf (Pi-ClUy) (2.3)

Again, f*(Qi*-clUx*) f*((x*-x)%Qi*-ClUx*)Uf*(XOQi*-ClUx*) f*((x*-x)Qi*-
ClUx* %) f (Qi-clUx)Pi-clUy (by virtue of (2.1), (2,2) and (2.3)).

Next we consider x X*-X, and let U be a ji-regularly open set containing f*(x)
Y

(= y, say). Hence yY--Uy, where Y--U is a ji-regularly closed set. Since yIPj-clVY -i} 3. Then by ji-*-VNi(f,Nx*i) Lemma 1 gives xEQi*-cl f (P.-clU)I UNy
freeness of f, xQj*-cl f-l(y-u ). Then U =X*-Q.*-clf-l_(Y-Uy) is a Qj*-open nbd of

Y -i
x ii

(*x. But Y=P.-clU (Y--U ). Thus =f (P.-clU)f (Y--U). Then Qi,_cl f-l(p.-
R.H.S. Let V be any Qi*-open nbdclU ) Qj*-cl f (Y-U If not, let Xo x*-x but x

Y Y -i
X*-Qj R.H.S.) and X is pairwiseof x Since x V[ *-cl f (Y-U) (note that x

o o
-i Y -I

dehse in X*, v O[x*-Qj*-cl f (Y-U)]%XM which gives VOf (P.-clU) 96. Hence
Y

_
Xo Qi,_cl f-l(p._clU a contradiction. Now since Uxj*-cl f (Y--U) ,

-i Y Y
U i*cl f (P.-clU), i.e.,
x y

-i
Qi*-ClUx Qi*-cl f (P.-clU) (2.4)

y
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-i -i -i
Again, U {%X X-Q_.*-cl f (Y-U) x-f (Y-U) f (U). Thus

x Y Y Y
-i

Qi-cl(UxOX)Qi-cl f (U) (2.5)
Y

Now, f*(Qi *-clUx) f*((x*-x)Qi*-ClUx)Uf*(XQi*-ClUx f*((x*-x){%Qi*-ClUx
f(Qi-cl(Ux(x)) (as x is pairwise dense in X*)P.l-ClUy (by (2.1), (2.4), (2.5) and

Lemma 2, noting that f is ij-@-continuous). If U’y be any Pj-open. nbd od f*(x), then

U P.-int P.-clU’ is a ji-regularly open set containing y. Thus by what we have
Y l Y

obtained so far, there is a Q_*-open3 nbd U of x with f*(Qi*-clU_ )Pi-clU P.-clU’.x x y y
Hence f* is ji-@-continuous at each point of X*-X. Thus we infer that f* X*--Y is

ji-@-continuous. The ij-@-continuity of f* can similarly be dealt with. The uniqueness

of the extension f* of f follows from Theorems 1 and 2.

REMARK I. Putting Q1 Q2 and P1 P2 in the above theorem, we get Theorem 3.1 of

Rudolf 5]. If X and Y are topological spaces then the @-properness of a map f

is ensured by the QHC property of Y (see [5] for details). In bitopological setting

the definition of pairwise QHC property of Y (cf. [4]) implies that/{Pi-clU
UNJ(f-" ,Nx*j)}- ’ for i,j=l,2 (ij). But it is not necessary that PI-ClU_
UN2(f,Nx*2)}] [/{P2-clU U Nl(f,Nx*l)}] . Hence in our case, the role of

pairwise @-properness of f in Theorem 3 cannot be replaced, in general, by pairwise

quasi H-closedness of (Y’PI’P2) Nevertheless, taking QI=Q2 and PI=P2 we see that

every *-free @-continuous map from a topological space X to any H-closed topological

space Y can be extended uniquely over any extension space X* of X.

EXAMPLE i. Let X*=Y=R (=the set of reals), Ql*=Pl=the usual topology on R and

Q2*=P2=the lower limit topology on R. If X the set of rationals and Qi--Qi*/x, for

i=l and 2, then clearly (X*,QI*,Q2*) is an extension of (X,QI,Q2) and also, the map

f (X,QI,Q2)(Y,PI,P2), defined by f(x)=x (xEX), is pairwise @-continuous and

pairwise *-proper. Since (Y,PI,P2) is pairwise Hausdorff, f has a unique pairwise

continuous extension over X* by Theorem 3
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