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ABSTRACT. Using a generalization of the definition of’the projective cover of a module, a special

type of surjective free resolution, known as the projective cover of a complex, may be defined. The

projective cover s shown to be a direct sumrnand of every surjeetive free resolution and to be

the direct sum of the minimal free resolution and an exact complex. Necessary and sufficient

conditions for the projective cover and minimal free resolution to be identical are discussed.
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1. INTRODUCTION.
Let R be a commutative ring with identity. A complex C of R-modules is a sequence of

R-module homomorphisms

.... C, C,_, ..... C1 Co -*..

satisfying 6,-1 o 6, 0 for all E Z. The maps 6i are called the boundary maps of C. In this

paper, we will assume that all complexes are bounded above, i.e. C, 0 for all < 0. If ker 6,-1

im 6 for all G Z then C is called an exact complex.

A map of complexes C D is a sequence of R-module homomorphisms C, 24 D, which

commutes with the boundary maps of the complexes C and D. If each map , is surjeetive, we

will say that is surjective and if each induced map H,(C) 0- H,(D) is an isomorphism, we will

say that is a quasi- isomorphism. Generalizing the definition of the projective cover of a module,
we define the projective cover of a complex C to be a complex P of projective modules and a map

of complexes P C with the following two properties:

1. For any complex Q of projective modules, and any map of complexes Q -0 C, the diagram
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can l)e c,npleted 1,v a nal, of complexes. (If P L C satisfies this conditmn alone, then the map

is cdled a l)r()j(’(’live l)l (’(’()v(,1 .)
2. The liaram

*C

can only be completed bv maps of complexes which are automorphisms of P, in each degree.

It can be shown (see Goddard[1]) that every bounded above complex of finitely generated

modules over a Noetherian local ring has a projective cover and that the projective cover is a

unique surjective quasi-isomorphism. The proofs of these facts depend upon two key lemmas which

we shall find useful later in this paper as well. The first lemma, which is proved by Roberts[2]
(pp. 42-44.), is helpful in proving that the projective cover is a surjeetive map of complexes.

LEMMA 1. If G is a bounded above complex of finitely generated modules over a Noetherian

local ring then there exists a map of complexes F -t C such that

I. Each map F 2. C is surjective.

2. F is a free module for each .
3. is a quasi-isomorphism.

4. ,(Z,(F)) Z,(C) for each i.

Our second lemma, which along with the first is used to prove that the projective cover is a

quasi-isomorphism, has been proven by Goddard[1]. The proof is included here for completeness.

LEMMA 2. Let C be a bounded above complex. If P -’ G is a surjective quasi-isomorphism

then P is projective precover of (3

PROOF. Let Q be a complex of projective modules and let Q - C be a map of complexes.

We need to findamapQ Psothateoh=. We leth,=0fori<0. For the=0case, we

first need to note that for all > 0, e,(Z,(P)) Z,(G) {c 6 C,]6,(c) 0}. In order to do so,

let c 6 Zi(C). Since is a quasi-isomorphism, there is a p 6 Z,(P) such that e,(p) c 6 B,(C).
Since is surjective and commutes with the boundary maps, there exists p’ 6 Pi+, such that

,(b,+(p’)) 6,+(e,+(p’)) e,(p) c. Thus c e,(p b,+(p’)) 6 e,(Z,(P)).
Since eo(Zo(P)) Zo(C) and Qo is projective, the diagram

Z0(P) o Zo(C)

"
can be completed by a map h0. We now proceed inductively to construct h. Assume that we have

constructed h such that e h for all j _< and h commutes with the boundary maps. We

now wish to construct h+.
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g-+

Snce oh, og+l(q) E B,(C) for all q E Q,+I and is a quasi-isomorphism, we have h, og,+l(q)
B,(P) for all q Q,(R). Thus the diagram

b,, B (P)P+

ht g+

\

can be completed by a map h’ since O,+ is projective. For q ,+, we have (e,+l oh’- ,+)(q)
Z,+(C) so the diagram

Z,+(P) q+’

Qz+l

can be completed by a map h" since the module Q,+, is projective and the map

is surjeetive. If we let h,+l h’- h" then it follows eily that h commutes with the boundary

and e,+ o h,+ ,+.
Since the existence of projective covers and the hypotheses of lemma both place the same

requirements upon our complex C, we shall assume hereafter that C refers to a bounded above

complex of finitely generated modules over a Noetherian local ring. Under these conditions, the

projective cover P like the complex F constructed in lemma 1, turns out to be a complex of fr

modules. Thus we define a fr resolution of a complex C to be a quasi-isomorphism F C from

a complex of free modules into C.

The free resolution of a complex is not unique. The projective cover of is one example

of a surjective free resolution. Another unique type of free resolution is given below:

DEFINITION. A minimal free resolution of a complex C of R-modules is a free resolution

F C such that each boundary map F, F,_ is defined by a matrix with entries in the mimal

ideal m of the local ring R.

Roberts[2] shows that every complex has a unique minimal free resolution and that every

free resolution is a direct sum of a minimal free resolution and an exact sequence. Later in

th paper we will investigate the relationship betwn the projective cover and the minimal fr

resolution in detail.
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A<’cordinl4 to lemma 2, (,v<,rv sur.le<’tlve free resolution of a COml)lex C must be a projective

1)re<’ov<’r of C. The 1)r(,j(,<’ive <’ov(, tsclf is a unique examl,le of a surjective free resolution but

lhcr(, mav le other suj(,(’liv(, fiee resolutions as well. For example, if R Z/4 and C is the

1)ounde(l al)ove (’oml)lcx

c o z/4 z/4 o ..
then the projective cover of C is identical to C itself but if we utilize the construction used by

Roberts[2] to prove lemma l, we obtain a different surjective fl resolution:

z/ " z/4 z/z/ o

c o z/4 z/4 o

Notice in this case that the projective cover of C is identical to the minimal fr resolution of C.

We will see in the next section how the structure of the complex C forces this to be true.

While the projective cover and surjective free resolution are not identical, they are very closely

related. The exact nature of this relationship is sn in the following theorem:

THEOREM 1. The projective cover of a complex C is a direct summand of any surjeetive

free resolution of the complex.

POOF. Let P C be the projective cover of C and let P C be a surjective free reso-

lution of C. Since P is the projective cover of C, the diagram

can be completed by a map of complexes N P. Also, since N is a projective preeover of C (by
lemma 2), the diagram

P

can be completed by a map of complexes P N. Thus the map P P completes the diegrem

P

Since P & C is e projective cover, the map of complexes h o k must be an eutomorphism of P.

Therefore, h must be a surjeetion and we have the short exact sequence of complexes
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0--,K’ F--- P--,0

To see that P s a dre<’l summand of F, we simply need to show that there exmts a map

of complexes P - F s<’h that h o g zdp At lirst glance, this may seem obvmus snce P s a

complex of 1)to.lecture modules but t s not dflicult to find an example of a complex of projective

modules whwh does not form a projective complex (see Goddard[1]).
To obtain the map g, we observe that both and @ nmst be quasi isomorphisms, so h s a

quas-sonorphism as well. Snce h is also surjectve, by lemna 2, we know that h is a projective

precover so the diagram

can be completed by the desired map of complexes g. []

3. MINIMAL FREE RESOLUTIONS

Just as the projective cover is a direct summand of the surjectve free resolution, it is easy to

see that the projective cover is a direct sum of the minimal free resolution and an exact complex.

Although both the projective cover and the minimal free resolution are unique examples of free

resolutions, they are not necessarily identical. For example, if R Z/4, the complex

c ..... o z/4 z/4 o ....
is equM to its projective cover (The map P C is simply the identity map) but is not equal to

its minimal free resolution. In fact, the minimal free resolution of C is equal to the zero complex.

This example and the example of the previous section suggest that the relationship between

the projective cover and the minimal free resolution depends upon the boundary maps of C and

the maximal ideal m of the ring R. Our next theorem will begin to formalize this relationship but

we begin with a crucial lemma.

LEMMA 3. If P M is the projective cover of the finitely generated R-module M where

R is a local ring with maximal ideal m, x P, and e(x) mM then x raP.

PROOF. The result follows easily from the construction of the projective cover (see Rot-

man[3], pp 136.). []

THEOREM 2. If C is a complex of modules over a local ring R with maximal ideal m,

and C has boundary maps 6 such that 6,+1(C,+) _C taker(6,) for all z, then the projective cover

P C is equal to the minimal free resolution of C.

PROOF. Let b be the boundary map of the complex P. To prove that P is the minimal

free resolution, we must verify that b+(P+) c_ mP for all >_ 0. First, if p P then

e0(bl(p)) 51(1(P)) mCo

In the construction of the projective cover of a complex (see Goddard[1]), the map P0 Co is the

(module) projective cover of Co. Thus by the previous lemma, we see that b(p) mPo.
Now suppose x P,+ for some _> 1. Once again invoking the construction of the projective

cover
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we recall that

C’,+_[e,(p) 6,+(c)} where b,+ n o and e,+ r, o e. If e(x) (p, c) S,+, then we need to

show that b,+(x)
Since r,+(c) mker(/,) by hypothesis, we know

,+(c)- rc + +rc

for some r, r,. r, m and c, c2 c, 6 ker(,). Since P, is the projective cover of S,
{(p’, c’) ker(b,_) C, le,_(f 6,(d)}, (0, c) S, for < 3 _< n, and the projective cover is

surjective, we can find elements p, ,p, ker(b,) such that e,(p3) c3 for < j <_ n. It follows

that

and

e,(rp + + rnp.- p) 0

b,(rp + + r.p. p) 0

so the image of rp + + rnp, p in S, is (0, 0) mS,. Again invoking the previous lemma, we

have rp -t-...r,p,, p mP, so p mP, as well. []

One might wonder if we could weaken the hypotheses of our theorem slightly: If 6,+(C,+) C_

mC for all z, is the projective cover always equal to the minimal free resolution? As we shall

see shortly in an example, the answer is no, but first we observe that while this slightly stronger

conjecture is false, its converse is true.

THEOREM 3. Let C be a complex of modules over a local ring R with maximal ideal m

and boundary maps 6. If the projective cover of C is equal to the minimal free resolution of C

then 6,+,(C,+t) c_ mC, for all i.

PROOF. Let c C+ and let P C be the projective cover of (3. Since the projective

cover is surjective, there exists p Pi+ such that ei+(p) c. Since P (3 is also the minimal

free resolution of (3, bi+(p) rnPi and e,(b,+(p)) rnC. Since e commutes with the boundary

maps, we have ,+(c) mC,. []

At this point we have the following three statements which can be made about a complex C:

1. 6,+,(C,+,) _c mker(5,)
2. The projective cover of C is identical to the minimal free resolution of C

3. ,+l(Ci+l) C

We have seen that (1) (2) (3) but in the following two examples, we will illustrate that

statement (2)is equivalent to neither statement (]) nor statement (3).
First if we let R Z/4 with maximal ideal (2) and consider the complex



PROJECTIVE COVERS AND MINIMAL FREE RESOLUTIONS 191

w(, have the l)()]e(’v(’ (’()v(’1 ald I11(, nnlal fie(’ r(,s()lut()n of C l)oth equal () C tself where

P C s the l(lCll[ltV nla l) "l’he (’()nl)h’x C does l()t, SatlSfV stat(’nmnt (1) however so statements

(1) and (2) ac n() e(lUlValent
Next, if we le /t Z/S h naxmal (lcal (2) and let

C

which is it coml)lcx satisfying satement (3), we see that the projective cover P C is given by:

(0, l) (0, 1)

x2 x4c ---0 .0 .z/s z/s

where the boundary real) b_o given by the matrix

contains an entry not m the maximal ideal m. Thus P -L C s not the minimal free resolution of

C and statements (2) and (3) are not equivalent.

In order to give necessary and sufficient conditions for the projective cover and minimal free

resolution to be identical, we must define a new subcomplex D of C such that statement (2) holds

if and only if 6,+ (C,+) c_ D, for all z. From our discussion up to this point, we certainly need

mker(6,) C_ D, C_

for all i. With this in mind, given the complex C with projective cover P, we define the sub-

module D of C, to be the set of elements c C, such that there exists elements r r in the

maximal ideal m, elements c c C, and elements p, p ker(b,_) satisfying the following

conditions:

1. c :rlC J-... + rkck

2. e,_(pa) 6,(%) for j k

3. rip + + rkpk 0

It is ey to see with D, defined in this manner, that D is a subcomplex of C and that each D,

satisfies the subset inequality given above.

THEOREM 4. The projective cover P C of a complex C is equal to the minimal fr

resolution of C if and only if 6,+(C+) D, for all k 0.

PROOF. First, let us assume that P C is the minimal fr resolution of C. In other

words, if b is the boundary map of P then b,+(P,+) raP, for all z.

p,+ b,+l pi, b, p,_

6,+IC,+ C C,_

If c C,+I, since P L C is surjective, there exists p 6 P,+ such that (,+(p) c. Since

b,+l(p) raP,, we have
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where rl, r E n all pl’. .p.! E 1’,. l,etlilg c (p’) and p b,(p’), it is easy to see that

Secondly, let u asl]]c that ,((’,+) 1). We need to argue that if .r P,+ then

such that

1. 6,+(c)::rr: t- rc.
2. e,_(p;) 6(c;) for ) k

3. rp t- r.p. 0

If we define S, {(p, c) kcr(b,_) @ (’,16,(c) e,_ (p)} as in the proof of theorem 2, then

we have (pj, cj) 5, for 3 k. Since the projective cover P S is surjective, there exist

elenents p’, ,p’ e P sucl that e,(p;’) c; and b,(p;’) p; for j k.

If we let p b,, (x) then

e,(p- rp rpk’) --=-0

and

b,(p-- rlp rpk’) =0

so p rp’ rpk’
_

ker(e). Thus e(p rp’ rkpk’)
_
mS, so by lemma 3, it follows

that p raP, and our proof is complete.

We close with an additional observation about the interrelationship between the projective

cover and free resolutions. We recall that the surjective fi’ee resolution, being a projective precover,

is almost equal to the projective cover. The minimal free resolution can be regarded as equally

close to the projective cover for while the surjective free resolution always satisfies the first defining

condition of a projective cover, it can be shown that the minimal free resolution always satisfies

the second defining condition. The projective cover is in a sense squeezed in between, as it alone

satisfies both conditions.
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