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ABSTRACT. The radius of univalence is found for the convolution f,# of functions f E S
(normalized univalent functions) and g (5 C (close-to-convex functions). A lower bound for the
radius of univalence is also determined when f and g range over all of S. Finally, a characterization
ofC provides an inclusion relationship.
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1. INTRODUCTION.
Denote by S the family consisting of functions f(z) z + that are analytic and univalent

in A {z: zl < 1} and by K,S*, and C the subfamilies of functions that are, respectively,
convex, starlike, and close-to-convex in A. It is well known that K C S*c C c S. The
convolution oftwo power series

and g(z) Ebnz"

is defined as the power series
n-----0 n=0

y(z) E ,.b.z".
n----O

The Kvebe function k(z)= z/(1- z) often plays an extremal role in the family S. This
enables us to show it to be extreme in many convolution problems. For example, the modulus ofthe
nth coefficient for f,g, f and g in S, is n2 and is attained when f g k. Similarly, f*g takes
its maximum and minimum on the circle z r when f g k.

A question was raised in [4] as to whether

rnin Re (f,)(z) rnin Re (f,k)(.z) rnin Ref

when f and g are taken over all of S. The classical rotation theorem for f (5 S leads to the sharp
result that Ref’(z) > 0 when zl < sin(r/8). This was generalized in [4] to Re (f,9)(z) > 0 for
z < s/n (7r/8) when f (5 S and g (5 S*, but could not be extended to g (5 S or even to g (5 C. In

particular, functions f,g(5 C were found for which Re (l,9)(z) < 0 at some point

zo,’ 01 < ,(/8).
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In this note, we investigate the radius of umvalence for f,g, f and g in S For f E S and g k,
the Koebe function, f,g s umvalent m the dsk z <2- We prove that g-k can be

replaced by any g E C, but we cannot settle f ths extends to arbitrary g S. We do show, however,
that f.g is univalent for at least z < .8(2 x/)
2. MAIN RESULTS.

THEOREM 1. IffSandgC, then f.gs univalent m Izl <2-x,/. The results

sharp
PROOF. It s well known that f is convex in z < r if and only if zf’ is starlike in z < r

and that the radius of convexity of S s 2- x/. Thus, f.k zf’ has radius of starlikeness (and
hence radius of umvalence) at least 2 x/, the radms of convexity for f S Since

(,:), (:,), +4+ o at (2 x/S)(l_z)a

the radius ofunivalence off,g for f, g E S can be no greater than r 2 x/-.
When f S, we have f(az)/a K for a 2 x/. Hence, by a theorem ofRuscheweyh and

Sheil-Small [3], iff S and g C then

s() , g(z) e C c S.

Thus, f,g is univalent for z < 2 V/-, and the proof is complete.
In our next theorem, we replace C with S in the hypothesis and this leads to a weaker

conclusion.

THEOREM 2. Denote by r0 the largest value for which f,g is univalent in z < r0 for all

f, g S. Then .8(2- ,v/-) < r0 < 2 V/-.
PROOF. The upper bound was found in Theorem 1. Krzyz determined the radius of

close-to-convexity for S to be to 0.80 +. Since f(az)/a e K, a 2- f, and g(toz)/to
_
C,

(tozwe have from the Ruscheweyh and Sheil-Small theorem [3] that Y(z----2,-77-0 C, which shows that

f,g is univalent for z < t0(2- x/-). This furnishes us with the lower bound, and the proof is

complete.
Though we are unable to prove that r0 2- in Theorem 2, the lower bound on r0 most

certainly can be improved. Ruscheweyh defined the family M consisting of normalized functions f
by

M--{f:f,gO;g_S*,O< Izl <1}.

He proved the proper inclusions C c M C S and that f,g M for f K and g M [2]. Hence, if

tx is the largest value for which g(tlz)/tl M when g S, methods identical to those ofTheorem 2

show that f,g is univalent in z < tl (2 /’) for f, g E S. Unfortunately the value of tl, the
radius of"M-ness" for S, is unknown.

3. A CHARACTERIZATION OF C.
The inclusion C c M is not obvious and was proved by Ruscheweyh using his duality principle

[2]. Our final result is a characterization of C that leads to a more elementary proof that C c M.
We make use ofa result found in [3].

LEMMA 3. If K, S*, and F is analytic with ReF > 0 for z A, then

Re-2-- > O.
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THEOREM 3. A function f E C if and only f to each E S* we may associate an h S* for
which Re f*g > O, z a__ A.h

PROOF. To show that the condition is sufficient for f to be in C, we choose
zf’y(z) z/(1 z) e S*. Then Re - Re --- > 0, which means that f E C.

On the other hand, f fC we can find a =S* for which Rezf’/ >0 Set

F(z) zf’(z)/(z). Then for y E S* there corresponds E K such that z’= y. Note that

f*9 zf’, ,F and that h , S*. By Lemma A,

,FqRe Re >0,

and the proof is complete
COROLLARY. C c M
PROOF. Since Re f*h > 0 = f,g :/: O, the result follows from Theorem 3.
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