UNIVALENCE FOR CONVOLUTIONS

HERB SILVERMAN

Department of Mathematics University of Charleston Charleston, SC 29424

(Received May 10, 1994)

ABSTRACT. The radius of univalence is found for the convolution f*g of functions $f \in S$ (normalized univalent functions) and $g \in C$ (close-to-convex functions). A lower bound for the radius of univalence is also determined when f and g range over all of S. Finally, a characterization of C provides an inclusion relationship.

KEY WORDS AND PHRASES. Univalent, convolution. 1991 AMS SUBJECT CLASSIFICATION CODE(S). Primary 30C45, Secondary 30C50.

1. INTRODUCTION.

Denote by S the family consisting of functions $f(z) = z + \cdots$ that are analytic and univalent in $\Delta = \{z: |z| < 1\}$ and by K, S^* , and C the subfamilies of functions that are, respectively, convex, starlike, and close-to-convex in Δ . It is well known that $K \subset S^* \subset C \subset S$. The convolution of two power series

$$f(z) = \sum_{n=0}^{\infty} a_n z^n$$
 and $g(z) = \sum_{n=0}^{\infty} b_n z^n$

is defined as the power series

$$f(z)=\sum_{n=0}^{\infty}a_nb_nz^n.$$

The Koebe function $k(z) = z/(1-z)^2$ often plays an extremal role in the family S. This enables us to show it to be extreme in many convolution problems. For example, the modulus of the *n*th coefficient for f*g, f and g in S, is n^2 and is attained when f = g = k. Similarly, |f*g| takes its maximum and minimum on the circle |z| = r when f = g = k.

A question was raised in [4] as to whether

$$\min_{\substack{|z| = r}} Re \frac{(f*g)(z)}{z} = \min_{\substack{|z| = r}} Re \frac{(f*k)(z)}{z} = \min_{\substack{|z| = r}} Ref'$$

when f and g are taken over all of S. The classical rotation theorem for $f \in S$ leads to the sharp result that $Ref'(z) \ge 0$ when $|z| \le sin(\pi/8)$. This was generalized in [4] to $Re \frac{(f*g)(z)}{z} \ge 0$ for $|z| \le sin(\pi/8)$ when $f \in S$ and $g \in S^*$, but could not be extended to $g \in S$ or even to $g \in C$. In particular, functions $f, g \in C$ were found for which $Re \frac{(f*g)(z)}{z} < 0$ at some point $z_0, |z_0| < sin(\pi/8)$. In this note, we investigate the radius of univalence for f*g, f and g in S For $f \in S$ and g = k, the Koebe function, f*g is univalent in the disk $|z| < 2 - \sqrt{3}$ We prove that g = k can be replaced by any $g \in C$, but we cannot settle if this extends to arbitrary $g \in S$. We do show, however, that f*g is univalent for at least $|z| < .8(2 - \sqrt{3})$

2. MAIN RESULTS.

THEOREM 1. If $f \in S$ and $g \in C$, then f * g is univalent in $|z| < 2 - \sqrt{3}$. The result is sharp

PROOF. It is well known that f is convex in |z| < r if and only if zf' is starlike in |z| < r and that the radius of convexity of S is $2 - \sqrt{3}$. Thus, f * k = zf' has radius of starlikeness (and hence radius of univalence) at least $2 - \sqrt{3}$, the radius of convexity for $f \in S$ Since

$$(k*k)' = (zk')' = \frac{1+4z+z^2}{(1-z)^4} = 0$$
 at $z = -(2-\sqrt{3})$,

the radius of univalence of f * g for $f, g \in S$ can be no greater than $r = 2 - \sqrt{3}$.

When $f \in S$, we have $f(az)/a \in K$ for $a = 2 - \sqrt{3}$. Hence, by a theorem of Ruscheweyh and Sheil-Small [3], if $f \in S$ and $g \in C$ then

$$rac{f(az)}{a} * g(z) \in C \subset S.$$

Thus, f * g is univalent for $|z| < 2 - \sqrt{3}$, and the proof is complete.

In our next theorem, we replace C with S in the hypothesis and this leads to a weaker conclusion.

THEOREM 2. Denote by r_0 the largest value for which f * g is univalent in $|z| < r_0$ for all $f, g \in S$. Then $.8(2 - \sqrt{3}) < r_0 \le 2 - \sqrt{3}$.

PROOF. The upper bound was found in Theorem 1. Krzyz [1] determined the radius of close-to-convexity for S to be $t_0 = 0.80 + .$ Since $f(az)/a \in K$, $a = 2 - \sqrt{3}$, and $g(t_0z)/t_0 \in C$, we have from the Ruscheweyh and Sheil-Small theorem [3] that $\frac{f(az)}{a} * \frac{g(t_0z)}{t_0} \in C$, which shows that f*g is univalent for $|z| < t_0(2 - \sqrt{3})$. This furnishes us with the lower bound, and the proof is complete.

Though we are unable to prove that $r_0 = 2 - \sqrt{3}$ in Theorem 2, the lower bound on r_0 most certainly can be improved. Ruscheweyh defined the family M consisting of normalized functions f by

$$M = \{ f : f * g \neq 0; g \in S^*, 0 < |z| < 1 \}.$$

He proved the proper inclusions $C \subset M \subset S$ and that $f * g \in M$ for $f \in K$ and $g \in M$ [2]. Hence, if t_1 is the largest value for which $g(t_1 z)/t_1 \in M$ when g = S, methods identical to those of Theorem 2 show that f * g is univalent in $|z| < t_1(2 - \sqrt{3})$ for $f, g \in S$. Unfortunately the value of t_1 , the radius of "*M*-ness" for *S*, is unknown.

3. A CHARACTERIZATION OF C.

The inclusion $C \subset M$ is not obvious and was proved by Ruscheweyh using his duality principle [2]. Our final result is a characterization of C that leads to a more elementary proof that $C \subset M$. We make use of a result found in [3].

LEMMA 3. If $\phi \in K, \Psi \in S^*$, and F is analytic with ReF > 0 for $z \in \Delta$, then

$$Re \; \frac{\phi * F \Psi}{\phi * \Psi} > 0.$$

THEOREM 3. A function $f \in C$ if and only if to each $g \in S^*$ we may associate an $h \in S^*$ for which $Re \frac{f*g}{h} > 0, z \in \Delta$.

PROOF. To show that the condition is sufficient for f to be in C, we choose $g(z) = z/(1-z)^2 \in S^*$. Then $Re \frac{f*g}{h} = Re \frac{zf'}{h} > 0$, which means that $f \in C$.

On the other hand, if $f \in C$ we can find a $\Psi = S^*$ for which $Rezf'/\Psi > 0$ Set $F(z) = zf'(z)/\Psi(z)$. Then for $g \in S^*$ there corresponds $\phi \in K$ such that $z\phi' = g$. Note that $f*g = zf'*\phi = \phi*F\Psi$ and that $h = \phi*\Psi \in S^*$. By Lemma A,

$$Re \; \frac{\phi * F\Psi}{\phi * \Psi} = Re \; \frac{f * g}{h} > 0,$$

and the proof is complete

COROLLARY. $C \subset M$ **PROOF.** Since $Re \frac{f*g}{b} > 0 \Rightarrow f*g \neq 0$, the result follows from Theorem 3.

REFERENCES

- 1. KRZYZ, J., The radius of close-to-convexity within the family of univalent functions, *Bull.* Acad. Polon. Sci. 12 (1964), 25-28.
- 2. RUSCHEWEYH, ST., Convolutions in geometric function theory, Les Presses De L' Université De Montréal, Montreal, Canada, 1982.
- 3. RUSCHEWEYH, ST. and SHEIL-SMALL, T., Hadamard products of schlicht functions and the Pólya-Schoenberg conjecture, *Comment. Math. Helv.* 48 (1973), 119-135.
- 4. SILVERMAN, H., Radii problems for the convolution of univalent functions, *Houston J.* Math. 19 (1993), 45-50.