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ABSTRACT. In this paper we prove that, in the space 4 of almost continuous functions (with the metric
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Among many generalizations of the notion of continuity, special attention of mathematicians

has recently been focused on the concept of almost continuous (in the sense of J. Stallings

[8]) functions. The observation of the fact that these finctions, in the case of the mapping

of closed intervals into themselves, possess a fixed point caused the investigation of topological

properties of those mappings (e.g. [1], [3], [5]). On the other hand, investigations connected with

algebraic operations performed on almost continuous functions were carried out (e.g. [4], [9],
[6]). However, so far, less attention has been devoted to the study of the structure of the space

of almost continuous functions with the topology of uniform convergence (and other topologies

defined in this set of functions).
The present paper is an attempt at a preparatory study of the basic properties of this space.

On the basis of J.B. Brown’s results included in paper [1], we may infer that every Darboux

function of the first class of Baire is an almost continuous function. Of course, every almost

continuous function is a Darboux function, but need not be a function of the first class of Baire

([1], [7]). Cgnsequently, the following question arises: "how large" is the set in the space of

almost continuous functions f I -, I with the metric of uniform confergence, composed of
functions of the first class of Baire? The answer to this question is contained in Theorem 1. It
should be stressed here that this theorem thereby answers the question how often functions of
the first class of Baire occur in the class of Darboux functions f I I possessing a fixed point.

Before we formulate the theorem and prove the lemmas preceding this theorem, we give the
essential definitions and symbols used in this paper.

Throughout the work, we shall consider only functions f I I, where I [0,1]. Let
12 I x I. The symbol 0 stands for the natural netric in I.

The bilateral closed (bilateral open, etc.) segnent with the end-points a and b is denoted
by [a, b] ((a,b), etc.). Since our cosiderations are restricted to the unit interval, we write [a,b]
instead [a, b] f3 1 (similarly (a, b) instead of (a, b)f-i I, etc.).

The graph of the function f is denoted by 9(f).
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We say that a function f X )", where X and Y are arbitrary topological spaces, is almost
continuous if, for any open set V C X x Y containing the graph G(f), V contains the graph of
some continuous function g X

The set of all almost continuous fitnctions f I I and the metric space consisting of these
functions with the metric " of ulit’orm convergence is denoted by the symbol 4. By the letter

.A we denote the set of all f A which are functions of the first class of Baire.

Suppose f X Y. The statement that the subset of X x Y is a blocking set of f in
X x Y means that C is closed relative to X x Y, C t3 (f) q) and C intarsects 7(g) whenever
g" X Y is a continuous function. If no proper subset of C is a blocking set of f in X x Y, C
is said to be the minimal blocking set of f in X x Y.

Let A C 12. Then projx(A) denotes the projection of the set A onto the X-axis and, in the
case when A is a closed set, we assume (A)r,, {(z0, Y0) A" y0 min{y" (xo, y) A}}.

Let f" I I. If A C I (f(I) C B), then by the symbol flA (flls) we understand a function
from A to I (from I to B as a subspace of I).

For 0 < ( < < 1, we define a function f’ I I by letting:

f(x) if f() [o,],
f(x)

Let X be a metric space. The open ball with centre x and radius r > 0 will be denoted by

K(z, r). Let M C X, x X and R > 0. Then we denote by 7(z,R, M) the supremum of the

set of all r > 0 for which there exists z 5 X such that K(z,r) C K(x,R) \ M. The number

p(M,x) 2-limsups_.0+ (,s,M)t is called the porosity of M at z ([10]). M is porous at x if

p(M, x) > 0. We say that E C X is superporous at z X if E U F is porous at z whenever E

is porous at z ([11]).

Now we formulate three lemmas showing some properties of almost continuous functions.

These properties are applied later.

Lemma 1 Let f: I --, I ba a function such that f I) C [cr,/31 where < . Then f .A if and
only if fllI,,al is almost continuous.

Remark 1 If f X --, Y, where X, Y are toplogical spaces, is a continuous function such that

f(X) C B C Y, then flls is a continuous function, too. However it is not diJflcult to construct

an example of a topology T defined in I and an almost continuous function I (1, 7r) such

that 9(I)= [1/2,1] and gilt1/2,1] /s not almost continuous.

Lemma 2 ([6]) A function f: I I is almost continuous if and only if flt,bl is almost contin-

uous for any a, b [0,1].

Remark 2 It is known that there exists an almost continuous real function defined on some

compact subset K of the plane, such that the restriction of this function to the set Int K is not

almost continuous([6]).

Lemma 3 Let f: I [, 3] be a function for which there exists an interval (a, b) C 1 such that

fll\(a,li and fll\t0,b) ave almost continuous and f is not almost continuous. Then projx(h’l)fq(a, b)
is a nondegenerate interval, where KI C I [a, 3] is the minimal blocking set of f.
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Proof. It is suiticicnt to prove (see, for exavnple, [3], Theorem 1; [9], Lemma 4; [6], Theorem
1.1.2) that projx(Kl)f3 (a.b) . Assume, to the contrary, that prodx(Kl) (o,b) 0. Thus,

according to the above-cited theor(’ns, either I( C {(x,y) x a} or lf C {(x,y) x b}.
Without loss of generality assume t}at Kl C {(x.y) x a}. Of corse, Kf G(f) 0, and so,

Kl9(f*) wherc f" .flt(,,]. L(’t us considcr the set A ((I (a. 1]) x [o,]) KI. Thus

A is a neighbourhood of (.f’)(in (1 (a, 1]) x [&,/]). This means that A cow,talus the graph of

some continuous function g*: I (a,l] [a, fl]. Let (for x G I)

9*(x) if xEl\(a,l],
g*(a) f x >_ a.

Then g is continuous and KI gl (g) q), which is impossible because K! is the blocking set of

f. The contradictions obtained ends the proof of the lemma.

Theorem 1 The set 4 is perfect and superporous at each point of the space .A.

Proof. According to J.B. Brown’s theorem and the well-known fact (see, for example, [2],
Theorem 2.3.4]) that the limit of a uniformly convergent sequence of Darboux functions of the

first class of Baire is a Darboux function of the first class of Baire, we deduce that A1 is closed
in ,4.

We shall show that A1 is dense in itself.

Let f E .A, > 0 and let xo (0,1) be a continuity point of f. Then either f(xo) < or

f(xo) > 0. Without loss of generality assume that f(xo) < 1. Let now 0 < #1 < 3
a be a number

such that f(Xo) + 2- gl < 1. Then there exists (f > 0 such that [z0 6, x0 + 6] C (0, 1) and

f([xo (5, Xo + 6]) C (f(xo) #,,f(xo) + #,).

Let us consider g I I defined by letting: g(x) 0 for
x q [xo-6, xo+6], g(xo) #1 and g is linear in [xo-6,Xo] and [xo, xo+6]. Thus g is

continuous, and so (see [2], Theorem 2.3.2), h f 4- g ,41. It is not difficult to see that f h
and *(f,h) < #.

In this way the fact that .A is perfect has been demonstrated.

Now, we shall show that 41 is superporous at each point of the space .A.
So, let M be an arbitrary porous set at t. Assume the notation from the definition of a porous

set. Let p(M,t) 2a > 0. This means that there exists a sequence {R,} such that P " 0 and

lim
7(t, R,,, M)

a.

Let n be a fixed number. From the definition of 7(t, R,, M) it follows that (for n sufficiently

large) there are d A and , >_ 7(t,R,,M)- . R,, > 0, such that K(d,,) C K(t,t) \ M.
Moreover,

if K(d, 5_) ;3 A, O, then 7(t,R,,,M U A,) > 5- (2)

Let us consider the case when there exists o K(d, ) f’l 4. We infer that

K(2, --) C K(d,-) C K(t,P). (3)

"To simplify the notation, assume -q-. Let x0 be a continuity point of . Then there exists

a nondegenerate interval [a, b] such that qa([a, hi) C ((x0)- i, (x0)+ i)" On the set of points
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belonging to (a, b) we define tlw following equivalewe relation:

a" . y f aTd only i.f x y

where denotes the set of al rational tmmbers.

Let denote the set of all e(luivalence classes of the above relation. For each x (a,b),
let B fi be a set such that x B. By the symbol we denote an arbitrary mapping from

onto B1 where B stands for t]e set of all functions of the first class of Baire from I to

[(x0)- , (x0)+ ]]. Moreover, we define the function 9 by letting

(x) if xaorxb,
g(x) ((B))(x) zf z e (a,b).

We shall show that

eA. (4)

Suppose on the contrary that 9 it A. Then, according to Lemma 2, we can show that the

function 91 I I defined by:

(a)if x<_a,
(,.) () iI (,),

p(b) if x>b

does not belong to

From Lemma it follows that g* gll[,(o)-,.(}+l is not almost continuous, and so, there

exists a minimal blocking set

Ka. C I x [V(x0) i, T(x0) + i] of g*. By Lemma 2 we deduce that the assumption of Lemma 3

are fulfils and so (a, b) Ka. contains some nondegenerate interval [c, d]. Thus the set

U {(x,min{y I’(c,d) K,.})’x <_ c}U
U{(x, rnin{y I (d,y) Ka.}) x >_ d}U
u(ga. 13 {(x,y) c <_ x <_

is the graph of some function r/ B. Let B, B such that (B,) r/and z B, FI [c, at]. Then

g*(z) g(z) r/(z) and, consequently, (z,g*(z)) K., which contradicts the assumption that

K. is the blocking set of g*; thus condition (4) is satisfied.

We infer that:

However, by condition (5), we have

K(g,-) C K(cp, e). (6)

Now, we shall show that, for each function ( 4,, we have K(g, ). Assume to the

contrary that there exists such that K(g, ) 3 .A. Therefore, in the interval (a, b) there

lies some continiuty point yo of . We deduce that (yo) [(xo)- , (xo)+ ]. Without

loss of generality assume, that (y0) [q(z0),q(x0)+ ] (if (y0) [(x0)- , (xo)], then
the proof is analogous). Thus there exists a nondegenerate interval (p, q) C (a, b) such that

((p,q)) C ((zo)- ,1]. Let B’ Y be a set such that the function (B’) is constant and
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-I0"

Alllyig (9). ,, 0,, (for ,lliciely large). Thus, to

the lrool, il ,llici’s Io ol,rve lhat"
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