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ABSTRACT. The propagation ofmagneto-thermoelastic disturbances produced by a thermal shock

in a finitely conducting elastic half-space in contact with vacuum is investigated. The boundary of

the half-space is subjected to a normal load. Lord-Shulman theory of thermoelasticity [1] is used

to account for the interaction between the elastic and thermal fields. Laplace transform on time is

.used to obtain the short-time approximations of the solutions because ofthe short duration of ’second

sound’ effects. It is found that in the half-space the displacement is continuous at the modified

dilational and thermal wavefronts, whereas the perturbed magnetic field, stress and the temperature
suffer discontinuities at these locations. The perturbed magnetic field, is, however, discontinuous

at the Alf’ven-acoustic wavefront in vacuum.
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1. INTRODUCTION
The generation of magneto-thermoelastic waves by a thermal shock in a perfectly conducting

half-space in contact with vacuum was investigated by Kaliski and Nowacki [2]. Both media were

supposed to be permeated by a primary uniform magnetic field. But the influence of coupling
between the temperature and strain fields was neglected. The coupling between temperature and

strain fields was taken into account by Massalas and Dalamangas [3]. Then Roychoudhuri and

Chatterjee [4,5] extended the problem [3] in generalized thermoelasticity by using the thermal

relaxation time of Lord-Shulman theory 1] and the theory of Green and Lindsay [6], involving two
relaxation times. Later, Sharma and Dayal Chand [7] studied transient generalized

magneto-thermoelastic waves in a perfectly conducting elastic half-space due to a normal load acting
on the boundary of the half-space using the generalized theory of thermoelasticity developed by
Lord and Shulman [1].

Solutions of more complicated problems than that of ref. [2], [3] and [5] were investigated
respectively by Kaliski and Nowacki [8], Massalas and Dalamangas [9] and Roychoudhuri and

Chatterjee [10], where they assumed that the elastic half-space had a finite conductivity.
In the present paper we extend the problem [7] assuming that the elastic half-space has a finite

conductivity in the case when the boundary of the half-space is subjected to a prescribed normal

load and thermal shock. The solutions valid for short-times, for the deformation, stress, temperature
distribution and perturbed magnetic field in the half-space as well as in the vacuum are derived.
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2. PROBLEM FORMULATION

We assume that a magneto-thermoelastic wave is produced in an elastic half-space xl 0 due

to a normal load and a thermal shock applied on xt -0.

The simplified linear equations of electrodynamics of slowly moving bodies having finite

conductivity are the following [10]

Po Oh
VxE

C 0t

4:.-.
Vh ----g (1)
V .h -0

whereE denotes the electric field, h is the perturbation of the magnetic field,H0 is the initial constant

magnetic field, " denotes the current density vector, ’ denotes the displacement vector, I- is the

magnetic permeability, X is the electrical conductivity and C is the velocity of light.
The linear form of the displacement equations of motion including electromagnetic effect and

the modified form of Fourier’s law of heat conduction in the context of LrdoShulman theory [1]
of thermoelasticity are,

.v+(x +)(. u-3+[()go]-o-o (2)

pc(0 + o0) + To(A + 0A) KVO (3)

where K, are the Lam6 constants, ? (3. + 2)ar, ctr is the coefficient of linear thermal expansion,

0- T- To, T is the absolute temperature, To is the uniform temperature of the body in its natural

state, K , denotes coefficient of heat conduction, C, is the specific heat at constant strain, p is

the mass density, Cv is the sp. heat at constant volume, ando is the thermal relaxation time, A is the

dilation.

The equations (1), after elimination ofE and j give,

v’-’-- 6",,’0) (4)

where

I]- C

The magneto-thermoelastic wave propagated in the medium xl > 0 is assumed to depend on xl

and time t. Furthermore it is assumed that the initial magnetic field vector is directed along the

x3-axis
i.e. H (0, 0,H3) where//3 is a constant.

Under these assumptions, equations (1) lead to
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Consequently

where

C Oh3
j- o,-,o

j-oO, E_- c

E (0,E2,0),

C 0h3 Pt3aE
4o axl C

The equations (2), (3) and (4) then reduce to

0ul H ah OO 02u
(+2)0x 4n ax, Y"p’ (5)

(ao ao
pC + +VTo +o. _= -Kx at oxdt

a2h3 Oh3 a2ui
(7)

For clarity, we shall use the notations, u -u, x- x in the following.

Since, the elastic medium is in contact with the vacuum, equations (5)-(7) have to be

supplemented by the electrodynamic equations in vacuum.

In vacuum, the system of equations of electrodynamics reduce to the following

(6)

(8)

BOUNDARY CONDITIONS

The components of Maxwell’s stress tensor in the elastic medium Tn and in vacuum a are

given by

Tn -hfl
/,l ;

The normal stress in the elastic medium is obtained as

(9)
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o- (Z. + 21-t)’-y0
The boundary conditions are assumed as

o,+Tlt-’tl-OoH(t) on x-x’-0

(10)

(11)

e-,h- on x-x’-o

and the thermal boundary condition is assumed as

0(0,t)-0oH(/) on x-x’-O

where H(t) is the Heaviside unit function.

The initial conditions are,
u(x, O) o
0(x,0)- 0

ou(x,O).o
Ot

(12)

(13)

(14)

4. SOLUTION OF THE PROBLEM
To find the solution of the problem we introduce the following notations and non-dimensional

variables . Cox C 0

Co(. + 2gt + aoo)u rU-
r, VTo ’"fro

e
C,( +2 + ap) " C, pC

1 H3yTo

’4nrro’ ’’ 3-pcg

Co ccg-c?+oo, o-, -, ’-T.o.
The equations (5), (6), (7) then reduce to

0

/,;, 2/ tt" 0

where ’=-

The equations (8) reduce to

(15)

(16)

(17)

(18)
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Boundary conditions (11)-(13) reduce to

C Oo .,c- r._z + ’h on() o 0

-[,h.;., + fSsU..,., + .;- O on

Oo
z(o,t)- -/-/() o - o

1o

where

(1 Ixo)/-/

The total stress ot in the half-space is given by

where

(19)

(20)

(21)

(22)

o ( + 21,t):-- yO

[a.oH3h3
Tl1"- 4n

We observe that the equations (15), (16), (17) and (18) are in agreement with the equations (24),
(25), (26) and (27) of [9] respectively, on setting x0’ 0 (with some change of notations). Also on

setting o0-0, equation (19) is in agreement with the 1st equation of (14) of [10], on setting t’-0

except possibly a factor due to some erroneous calculations in [10]. Equations (20), (21) and (22)
are also in agreement with the 3rd, 2nd and 4th equn. of (14) of [10] respectively.

The initial conditions (14) reduce to

au(.u(o)-0, - r.o)-0, z(0)-o. (24)

Usually it is very difficult to find the solution of the above equations, which constitute a set of

coupled partial differential equations in three variables U, Z, and h with coupled boundary condition.

For this, a simplification is made assuming that the perturbed magnetic field h in > 0 is such that. 0 which implies that the perturbed magnetic field in the half-space varies very slowly with

distance so that - _
0. For this assumption equation (17) gives

-u., r, > o. (25)

Equation (15) then reduces to

u,-z,-u,.-0, r.>o.
On taking Laplace transform, this equation reduces to- g--o, .o. (0

On taking Laplace transform, equations (16) and (19)-(22) reduce to

( 02- ) oaXo’: 2 ( /o’)-=, ; > o (7)

o o +T (23)
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c a- o0
on -’-0c o z+f;h

s

h-h, on --’--0
Oh

55’ + (1 45)’-- 0 on --’0

OoZ on -’-0.To s

With the help of equation (27), elimination of from equation (26) and (27) yields

0 02
--/- s{e + +(1 +’to’ + eXo’)S}- + s(1 +’to’S ’-0.

The general solution of the above equation, vanishing at - oo is given by

Z A exp(-X) +A2 exp(-L2

where :},.2, are the roots of the equation

(28)

(29)

(30)

(31)

(32)

(33)

Hence,

Z.4-s{e + +(1 +xo’ + e%’)s}Z. +s3(1 +Xo’s)-O. (34)

m- {(s + +e +’to’S +’to’S)__ [(1 + e’:"to’2 +’120
’2 +2e’to’ + 2:’1:o’2 2"go’)S

1/2

+ 2(e- + 2e’to’ +’to’ + e2"to’)S +(1 +r)2] m} (35)

The equation (34) is in agreement with the equation (3.18) of [4] and with equation (34) of [7]. Also

the equation (34) agrees with equation (33) of [5] for t’ ct" "to’.
Again on setting xo’ 0, the equation (35) agrees with equation (41) of [9]. Thus equation (34)

is more general in the sense that it incorporates the effect of thermal relaxation time "to’ of

Lord-Shulman theory. From (27), (25) and (33), we obtain

[A +m ($ + 17’$2 )
exp(-L2)](S + "I0’S2- k2)

exp(_),.U(s)
es(1 + xo’s) k,

(36)

-h(s)=
es(1 ’o’s’[Al(k-s) -x’s2)exp(-’x)+A2(2-s x’s2) exp(-)] (37)

Also from (18)

h (’,s) A exp(-cts’). (38)

Where the constantsAt,A2,A3 are to be determined from the boundary conditions (28), (29) and (31).

Hence,

1
Z(s)

,,s()_ Z.z)
[(K-K2s -K2o’sZ)exp(-a)-(K.Z -Kzs -K2xo’sZ)exp(-X,2)] (39)

1 (s + r.o’S2- .)
(Kt Kzs’---’--- o,S2ex___l__K2x P(2k)U(s)’fY’esZ(1 + Xo’S) (L- X]) X,

(s + %’s )(K2 K2s K2%’s2) exp(_L2)] (40)
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(s)- [(s + Xo’Sz- .2) (KI Kzs K2o’S2) exp(-.l)

(41)

where

-(s + Xo’S- 2)(K.- K2s K2o’S2)] (42)

00[
To

00[3" O0e Ooe
/To * To

The non-dimensional total stress in the half-space in the transformed domain is given by

011 ff’es=(X + 0’s)(X- [(. s %’s2)(KI Kz,s Ki%’s2) exp(-kt)

( s o’S2)(KI. Kzs K2xo’Sz)exp(-)]

[(K, Ks Kto’S)exp(-X,)

where

(KtZ. K2s K2o’S2) exp(_k2)] (43)

5. SHORT TIME APPROXIMATION

The inversion of the Laplace transform is very difficult because of the dependency of

on s. To reduce these difficulties, we use some approximate methods. The thermal relaxation effects

are short-lived. Accordingly we concentrate our attention on small time approximations.
For large s,

+ O(s-2) (44)’,2 -m + BI’z + Dl’2 s

where

W, (P2 +/- Fla)’a/v (45)

Bi,2 [P, (P,P2 2)/Fxa]/2q(P2 ++- 1"1/2)la (46)

Dx,2-[+/-P2/Fla(pxP2-2)2/F3a-(P +_(P,P2-2)/rla)2/2(P2+_r’a)]/4v(P2+/-r’a)v2 (47)

F-P-4Xo’, P-l+e, P2"l+to’+exo’ (48)
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F + .t0’ + 8.t0’) 4.t0’ (49)

The expressions for kt, imply that the solution given by eqs. (39)-(43) consists of two types of

waves in the half-space propagating with speeds Vl and V2 given by (45). From (49),
(1 + .t0’ + o’) > F, which implies V, < V2. Thus the wave propagating with the speed V is the slowest

wave which is called modified elastic dilational wave and the wave propagating with the speed V2
corresponds to the fastest wave which is called modified thermal wave. Also from equations

(45)-(48) we notice that as .t0’-0, Vl- 1, V2 oo which corresponds to the case of conventional

coupled theory of thermoelasticity. As V1 < V2, the modified elastic wave follows the modified

thermal wave. The third wave travelling with velocity i is the Alf’ven acoustic wave.

We now expand Z, U,h,h and o,,’ in ascending powers of and retain terms up to, neglecting

higher order terms, to obtain

VV (K__ {(2KtBo 2V,
-K2Z(s)

"(V V) v_K2%, v (W-

v]
K:o, VV] K,

exp +,-’V? V) -g:o’

V,-K- (V V]) v K2%,
s

+ exp +Bz

U(s)

"e’o’ W v]) V + "t’ WVz K2%’2 KBz K.a,
5+ 2 -V-2 +---)%

2Kl-Ko’- V+ +
2V,V(BzV, -BIV))KI

BiVi +
v?Vho’ (v?- v)

-K%’)}" s] exp[-(l +Bi)J- ,,o,(Vlz_VlzVzS Vz)[{ (K-I + V).to’
V12V2 K2%,2

1

+ 2 --V-- + .to’-K2.to’-v.v.v Z+’[ +

2VIVz(BzV -B,V2) K K2xo,2] exp
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hCs)
I"x0’CV?- V)

+ 2 +V +- "t’ V?V Kftn K,

K! 2VxV2(V,B2- Vfll) K,

2K2VV2xo’2(VB2 V2B)}(v?- v) 7 "to’(V?- v)

Kfto,2} { KBt 2K, B, B K,
s-+ 2 + r,o’-K2xo’ -V,V---- +- + V?Vo’

2VtV2(VB2 VzB,)
(- v#)

( K, ) 2K(V,B- V,),, + o’+ VlV(V?-V) 2K:,VV2xo’:’(VB2-V2B)}I](V?- V)
exp

hCs)
fY’o’ V v)

K1 K:,
-to’ 2( KIBi. +-)Xo’

2VV2(VB2 V)
(v v#)

exp[-ots’]

o’(L s) "170
K

K2xo,2 + Ego’( KV" "-K2%’B += KCto’ + vvo,
2VV:,(VB2- V2,B,) ( K(v?- v) +

2exo’VVa(V,Bu VB,)
(v?- v)

{ V+-)"r’ V’vK -Kit’
K21:o’v? }1 { (KIBI K:,B 2K1

+ 2 + K21:o’s V2 %’-

2VV2r,o’(V,B2-V:,B,)(K K2)v v)
+ +

2K,(V,B2- v:,B,) 2Ky,V,_o’2(V,B2- v,)
+v,v(v? v) v? v)

+eXo,(2KB, )2go’VV2(VB2-VB)(K
The inversion of the above expression yields the following short-time solutions

Z()=
VV]exp(-B)
,,(v?- v)
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VVexp(-B)

(BV +
2VV=(B=V BV=)

(v-v) )(

(BV +2VV(BV-B,V2) --+--- "V’ vv

"’o"(-v)

B) K2Kz B+ +-K:o’-,v :,Vo’
2VV2(V,B- VI)(K K):v + o’

2KI ( VIB2- V2BI)
+v v?- v

2K2V1V2"Ko’2(V1B2 V2BI)

_v,, ’-v?
K, _K2.%,2}H(X_V) +{2(Kl/,+)ov,v

2VVi%’{V,B V:,B,)
{v?- v)

K,B, Kz,BI VV:,(V,B2-
-97 + v : + v?-v) {,- c’)H{,-
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VV$- exp(-B) { K._! +
ff’e’to’(V?- v) v v)o vUvT-Ko’ +o K-2-K2"r’)}"(v’V--)

{ (KB2 K:;B 2K(B+ 2 --z,---)’to-V2 "*" -Kit’+
KI 2VV.(ViB2- V.)( Kt )(v- v)

+ o’

+v v?- v +
(v?- v)

B B

2K2VV2"to’2(VB2
(v v]) +Xo’(2KBI--I-K2) 2r’ro’VIV2(VB2-Vz;Bt)_

(V._V22)

vv(v? v== v v#)
+ v

6. DISCUSSION
From the short-time solutions it is observed that the solution consists of three waves--the

modified elastic wave travelling with velocity V1, the modified thermal wave travelling with velocity

V2 and Alf’ven acoustic wave moving with velocity L

The terms containing H x-g represent the contribution of the elastic wave in the vicinity of

the wave front VF., the terms with HO: ) represent the contribution of the thermal wave in the

vicinity of the wavefront - V2x and the terms with HO:-a’) represent the contribution of the

All’yen acoustic wave in the vicinity of the wavefront ,’-!,.
We observe that, in the solid the displacement is continuous at the modified elastic and thermal

wavefronts, but the temperature, total stress and perturbed magnetic field suffer discontinuities at

the two wave-fronts, whereas in the vacuum the perturbed magnetic field suffers discontinuity at

the Alf’ven acoustic wavefront.

The discontinuities are given by

v?v
[z z-.,,,, is"(v? v)

-v;v,
[z/ Z-] v, ff v? v

[h h-];. v,.,

[h h-;. V2*

Kt
K2r,o’) exp(-BiVx)v

(K-!-K2o’)exp(-B2V2"r,)
+ o’----Ko’-

v?v

v?vff’,o’(V?- v])

f3v?v K K2 K1 K2]+v v

exp(-BiVlx)

exp(-B2V:,:)
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["/-t"-];’v," [5"er,o’(V2, V) - + r’’ K2x’ + ---V# Kzx’ exp(-B,Vtx)

VV K K K Ko, + Xo’ Kzxo’ exp(-BVx)

which clearly depend on the magneto-thermoelastic and thermal relaxation parameters of the

medium.

It is to be mentioned that the case x0’-0 corresponds to conventional coupled theory of

thermoelasticity where,

V2oo, F=I, B 2’

(4-e)B, D- 8

NUMERICAL RESULTS
We define

[h,2] -h+- h-

[,;]

r,,= vt,2

For numerical work we use the following values for the physical constants (which correspond
to copper)

p 8.930 g/cm g: 1.14 cm2/s

Z. 1.387 1012 dyn/cm2,

Ix 0.448 x 1012 dyrl/cm 2,

t, 16.5 10-(c)-1- 1 g/*c e- 0.0168

We take 0o- 1, Oo- 1, H3- 1000, xo- 10-n, so I"= 1. Finite jumpts of temperature, stress and

perturbed magnetic field for different values of time x are presented in the following table.
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Table

Jumps "t 0.25 t 0.50 "t 0.75 "t 1.25

[Zt] 0.926549316 0.877368634 0.830798435 0.744942582

0.0 1   410
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