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1. INTRODUCTION.
Let (X, t) be a topological space and d" X x X [0, cx) such that d(x, y) 0 if and only if

x =y. X is said to be d-complete if d(xn, xn < c implies that the sequencen=l +I
{xn}n=l is convergent in (X, t). Complete metric spaces and complete quasi-metric spaces are

examples of d-complete topological spaces. The d-complete semi-metric spaces form an

important class of examples of d-complete topological spaces.

Let X be an infinite set and any T non-discrete first countable topology for X. There

exists a complete metric d for X such that < d and the metric topology d is non-discrete. Now
o is Cauchy in d.(X d) is d-complete since -,oo d(xn, xn 1) < c implies that {xn}nn=l +

Thus, xn --* x, as n o, in d and therefore in the topology t. The construction of d is given by
T. L. Hicks and W. R. Crisler in [1].

Recently, T. L. Hicks in [2] and T. L. Hicks ad B. E. Rhoades in [3] and [4] proved several

metric space fixed point theorems in d-complete topological spaces. We shall prove additional

theorems in this setting.
Let T X X be a mapping. T is w-continuous at x if Xn x implies Txn

xA real-valued function G" X [0, c) is lower semi-continuous if and only if n}n=O
sequence in X and lim Xn p implies G(p) < lim inf G(xn).

2. RESULTS.
In [2], Hicks gave the following result.

THEOREM ([2], Theorem 2)" Suppose X is a d-complete Hausdorff topological space,

T" X X is w-continuous and satisfies d(Wx, W2x) _< k(d(x, Wx)) for all x E X, where

k’0, )---, [0, ), k(0)= 0, and k is non-decreasing. Then W has a fixed point if and only if



104 L.M. SALIGA

Tnx Tp. [k is nott.h(,r(, exists x in X with x kn((l(x, Tx))< oc. In this case, x,,
assumed to 1,c (’onti,mous dud k2(d) k(k(a)).]

The following conditi(ms are exa,nincd. Let T:C X with C a closi’d subs(’t of the d-

,’omph’t(" topological spa,’,; X dud C C T(C). Let k :[0, cxz) [0, exz) 1)(" su( h that k(0) 0, k is

,o,-(lccr(’asing. au(l

k(d(Tx, Ty)) _> d(x, y) (2.1)

for ,ill x, y C, or

for all x, y G C, or

for all x, y C, or

d(Tx, Ty) >_ k(d(x, y)) (2.2)

d(x, y)>_ k(d(Tx, Ty)) (2.3)

k(d(x, y)) _> d(Tx, Ty) (2.4)

for all x, y C.
It will be shown that condition (2.1) leads to a fixed point, but that the other three conditions do

not guarantee a fixed point.

THEOREM 1. Suppose X is a d-complete Hausdorff topological space, C is a closed subset

of X, and T" C X is an open mapping with C C T(C) which satisfies d(x, y) _< k(d(Tx, Ty)) for

all x, y C where k" [0, oo)--, [0, oc), k(0)= 0, and k is non-decreasing. Then T has a fixed

point if and only if there exists x0 C with -oOn=l kn(d(Tx0’ x0)) <

PROOF. Notice that the condition d(x, y) _< k(d(Tx, Ty)) forces T to be one-to-one. Hence
T- exists. Also, T is open implies that T- is continuous, and thus w-continuous.

If p Tp then

Suppose there exists x0 C such that -OOn=l kn(d(Tx0 x0)) < oo. We know that T-1
exists, so let T be T- restricted to C. Then T :C ---+ C and d(Tlx TlY _< k(d(x, y)) for all x,

y C. Let y TlX. Then d(TlX W21x) < k(d(x, TlX)) for all x C. In particular,

d(TlX0, Tx0) <_ k(d(x0, TlX0) <_ k2(d(Wx0, x0) ). By induction,

d(T- lx0, Wx0) _< kn(d(Tx0, x0) ). Thus,

E d(T-lx0, T?x0) _< E kn(d(Tx0 x0)) < oo.
k=l k=l

Since X is d-complete, Tx0 converges, say to p. Note that p is in C since C is closed. Now

TI(Tx0) TlP as n 400 since T is w-continuous. But T + lx0 p as n-oo, and since

limits are unique in X, Tlp=p. Now T(Tlp)=T(p) and T(TlP)=p so Tp=p and T has a

fixed point.

COROLLARY 1. Suppose T" C X where C is a closed subset of a d-complete Hausdorff

symmetrizable topological space with C C T(C). Suppose d(x, y) < [d(Tx, Wy)]p where p > 1 for

all x, y C. If there exists x0 C such that d(Tx0, x0) < 1, then T has a fixed point.

PROOF. If x # y, 0 < d(x, y) _< [d(Tx, Ty)]p and Tx Ty. Thus T is one-to-one and T-
exists. Now d(T-lx, T-ly)< [d(x, y)]P implies that T-1 is continuous. Hence T must be
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Ol)(,n. L,t x0lwa point in C.lullthat d(Tx0.x0)<l. Ifd(Tx0,x0)=0. thcnxllisafixcdpoint
f T. Sqposc O<d(TxO. x0)<l. L,t k(t)=t p. and =d(TxO. x0). Note that (ot)t’<o,tpif
0 < o < 1. Since p < t. thc. i an (! G (0. 1) smh that p

(1 t. Now (t/’) 1’ < 1’ and there is
’p p p 2p pan o.G(0. 1) such that t" =.et But o.et =t =(t p) =(olt)P<oltt’ Hence o.<o 1.

Now 2p o.2tP o.2 < (Ol)2t. Assunm "p < ]t. Then
t(,+ l)t,= (t,,p)p < (,],t)t, (],pt p (,],pnl ,,],, + l)Pt. Hen,,’. l,v indu,tion, ’’t’ < (]’t for all

k"(d(Txo,xo)): [d(Txo,xo) ’’p< o ,<

since 0 < o < 1. Applying Theorem 1, we get that T has a fixed point.

If T is not open one could check the following condition.

THEOREM 2. Let X 1)c a d-conpletc Hausdorff topological space, C be a closed subset of

X, T" C X with C C T(C). Suppose therc exists k’[0, o) [0, c) such that

k(d(Wx, Wy)) _> d(x, y) for all x, y G C, k is non-decreasing, k(0) 0, and there exists x0 C such

that y kn(d(Tx0 x0) < cxz. If G(x)= d(Tx, x)is lower semi-continuous on C then T has a

fixed point.

PROOF. If x y, 0 < d(x, y) < k(d(Tx, Ty)) so that d(Tx, Ty) 7 0. Hence T is one-to-one

and T- exists. Let T be T- restricted to C. Now T C C and for x C,
d(x, WlX < k(d(Tx, x)), d(TlX, Tx,) _< k(d(x, TlX)) <_ k2(d(Tx, x)). By induction,

d(W?-lx, W?x) _< kn(d(Tx, x)). There exists x0 e C with yn=l kn(d(Tx0 x0)) < cx implies

n=l d(W?-lx0, Tx0) < cx. Since X is d-complete there exists p e X such that Tx0 p as

n cx. Note that p C since Tx0 C for all n and C is closed. Now G(x) d(Wx, x) is lower

sexni-continuous on C gives G(p) < lim inf G(T?x0)or d(Wp, p) < lim inf d(W-lx0 Wx0, 0.

Thus Tp p.

In [5], Hicks gives several examples of functions k which satisfy the condition of theorem of

that paper. These examples, with a slight modification, carry over to the non-self map case. The

non-self map version of Example is givcn for completeness. The other examples carry over in a

similar mazmer.

EXAMPLE 1. Suppose 0<,<1. Let k(t)=At for t>0. If d(x, y)<Ad(Tx, Ty), T is

open since T- exists and is continuous. Let x C. There exists y C such that Ty x. Now

d(x, y) d(Ty, y) < Ad(W2y, Ty) and y kn(d(Ty y)) < yo And(W2y, Wy) < cx.n=l n=l

Applying Theorem 1 we get a fixed point for T. (Note" d(x, y) _< A d(Tx, Ty) for 0 < , < 1 is

equivalent to d(Tx, Ty) > a d(x, y) for o > 1.)

The following examples show that conditions (2.2), (2.3) and (2.4) do not guarantee fixed

points.

EXAMPLE 2. Let R denote the real numbers and CB(IR, I) denote the collection of all

bounded and continuous functions which map 1 into 1. Let

C {f CB(I, IR)-f(t) 0 for all < 0 and lira f(t) > 1}.
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Define T" C CB(, ) by Tf(t)= 1/2f(t + 1) and 1,,t k(t)= -. Then

d(Tf, Tg)= 1/2d(f, g) _> l:(d(i’, g)). k satisfies (ondition (2.2)but, as shown in [6], W does not have
a fixed point.

EXAMPLE 3. Let T’[1, cx3)- [0, cx3) 1,c d,’fined by Tx X-x1- and h’t t:(t)=,. Th,’n

d(Tx, Ty) < 2 d(x, y) or d(x, y) _> t:(d(Tx, Ty)). k satisfics condition (2.3) but T do,,s not hav,, a

fixed point.

EXAMPLE 4. Let c0 denote the collection of all sequences that converge to zero. Let
C={xc0:llxll=l andx0=1}. DcfincT:Cc0byTx=ywhcrcyn=x1+l,n=0, 1,2,...,
and let k(t) 2t. Then d(Tx, Ty) d(x, y) _< 2 d(x, y) k(d(x, y)) for all x, y C. k satisfies

condition (2.4) but, as shovn in [6], T does not have a fixed point.
The following theorems were motivated by the work of Hicks and Rhoades [3].

THEOREM 3. Let C be a compact subset of a Hausdorff topological space (X, t) and
d X x X [0, co) such that d(x, y) 0 if and only if x y. Suppose T C X with C C T(C),
T and G(x)= d(x, Tx) are both continuous, and d(Tx, T2x)> d(x, Tx) for all x T-I(C) with

x Tx. Then T has a fixed point in C.

PROOF. C is a compact subset of a Hausdorff space so it is closed. T is continuous so

T-I(C) is closed and hence is compact since T-I(C)C C. G(x) is continuous so it attains its

minimum on T- I(C), say at z. Now z C C T(C) so there exists y T- I(C) such that Ty z.

If y z then d(z, Tz) d(Ty, T2y) > d(y, Ty), a contradiction. Thus y z Ty is a fixed point
of T.

THEOREM 4. Let C be a compact subset of a Hausdorff topological space (X, t) and
d X X [0, co) such that d(x, y) 0 if and only if x y. Suppose T C X with C C T(C),
T and G(x)= d(x, Tx) are both continuous, f: [0, co) [0, co) is continuous and f(t)> 0 for

0. If we know that d(Tx, W2x) _< f(d(x, Tx)) for all x T- (C) implies W has a fixed point
where 0 < < 1, then d(Wx, T2x)< f(d(x, Wx)) for all x T-I(C) such that f(d(x, Tx)) 0

gives a fixed point.

PROOF. C is a compact subset of a Hausdorff space so it is closed. T is continuous gives
that T-(C) is closed, and T-I(c)C C so T-(C) is compact. Suppose x Tx for all

xW-(C). Then d(x, Wx)>0 so that f(d(x, Wx))>0 for all xW-l(c). Define P(x) on

d(Tx T2x)T-I(C) by P(x)= f(d(x, Tx))"
P is continuous since T, f and G(x) are continuous. Therefore P

attains its maximum on T- I(C), say at z. P(x) < P(z) < so d(Wx, W2x) _< P(z)f(d(x, Ix)) and

T must have a fixed point.

THEOREM 5. Let C be a compact subset of a Hausdorff topological space (X, t) and

d X x X [0, co) such that d(x, y) 0 if and only if x y. Suppose T C X with C C T(C),
W and G(x)---d(x, Ix) are both continuous, f: [0, co) [0, co) is continuous and f(t)> 0 for

0. If we know that d(Wx, W2x) _> A f(d(x, Tx)) for all x T- (C) implies W has a fixed point
wher A > 1, then d(Wx, T2x) > f(d(x, Tx)) for all x T- I(C) such that f(d(x, Tx)) 0 gives a

fixed point.



FIXED POINT THEOREMS IN A TOPOLOGICAL SPACE 107

PROOF. C is a compact subset of a Hausdorff space so it is closed. T is continuous giw,s

that T-(C) is closed and hence compact, since T-(C) c C. Suppose x # Tx hr all

d(Tx, T2x) P is continuousx T-(C). Then d(x, Tx) > 0 and f(d(x, Tx)) > 0. Define P(x) f(d(x Tx))"

sin" T, and G arc contimmus. P attains it minimum on T- I(C), say at z. P(x) P(z) > so

,l(Tx, T2x) P(z)f(d(x, Tx)) and T must have a fixed l,oint.
Theorems fi, 7 and 8 arc generalizations of theorems by Kang [7]. The following family of

real functions was originally introduced by M. A. Khan, M. S. Khan, and S. Sessa in [8]. Let
denote the family of all real fimctions 6"(R + )3 R + satisfying the following conditions:

(C l) is lower-scmicontinuous in each coordinate variable,

(C2) Let v, w R + be such that either v d(v, w, w) or v (w, v, w). Then

vhw, where(1, 1, 1)=h>1.

THEOREM 6. Let (X, t, d) be a d-complete topological space where d is a continuous

symmetric. Let A and B map C, a closed subset of X, into (onto) X such that C C A(C),
C C B(C), and d(Ax, By) > $(d(Ax, x), d(By, y), d(x, y)) for all x, y in C where E . Then A
and B have a common fixed point in C.

PROOF. Fix x0EC. Since CcA(C) there exists xIC such that Axl=x0. Now
x oo byC C B(C) so there exists x2C such that Bx2=x1. Build the sequence n}n=O

Ax2n + x2n, Bx2n + 2 X2n + l" Now if X2n + x2n for some n, the X2n + is a fixed point of

A. Then

d(x2n + 1, X2n + 1) d(x2n, X2n + 1)

d(Ax2n + 1, Bx2n + 2)

-> (d(Ax2n + 1, X2n + 1), d(Bx2n + 2, X2n + 2), d(x2n + 1’ X2n + 2))

(0, d(x2n + 1, X2n + 2), d(x2n + 1, X2n + 2))

By property (C2) d(x2n X2n+ 1) >- h d(x2n+ 1, X2n+2)" Hence, X2n+ X2n+2 and

Bx2n + Bx2n + 2 X2n + 1" Therefore X2n + is a common fixed point of A and B. Now if

X2n + X2n + 2 for some n, then Bx2n + 2 Bx2n + X2n + 2" Then

d(x2n + 2, X2n + I) d(Ax2n + 3, Bx2- + 2)

-> (d(Ax2n + 3, x2n + 3), d(Bx2n + 2, X2n + 2), d(x2n + 3’ X2n + 2))

(d(x2n + 2, X2n + 3), d(x2n + 1, X2n + 2), d(x2n + 3, X2n + 2))"

By property (C2) d(x2n+l, x2n+2)>-hd(x2n+2, X2n+3)r X2n+2=x2n+3.
Ax2n + 2 Ax2n + 3 x2n + 2 and x2n + 2 is a fixed point of A also.

Suppose xn # xn + for all n. Then

Thus

d(x2n, X2n + 1)= d(Ax2n + 1, Bx2n + 2)

>-- (d(Ax2n + 1, X2n + 1), d(Bx2n + 2, X2n + 2), d(x2n + 1, X2n + 2))

(d(x2n, X2n + 1), d(x2n + 1, X2n + 2), d(x2n + 1, X2n + 2))"
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Again by (C2) d(x2n x2,,+ 1) -> h d(x2n + 1’ x2,,+’2) or d(x,2n + 1, x2n+ 2) -< d(x2n, x2n+ 1)"
Also,

d(x2n + 1’ X2n + 2) d(Ax2n + 3’ Bx2n + 2)

-> $(d(Ax2n + 3, x2. + 3), d(Bx2n + 2, x2. +2), d(x’2n + 3’ x2n + 2))

(d(x2n + 2, x2n + 3), d(x2n + 1, x2n + 2), d(x2n + 3’ X2n + 2))"

By (C2) we get d(x2n + 2, x2n + 3) -< d(x2n + 1, x2n + 2)" Induction gives

()n + n
,.

d(Xn+l, xn+2) d(x0, xl). Thus E d(Xn+l’Xn+2) [) d(x0, x,) <. X
n=l --1

is d-complete so xnp as n where p, since is closed. We also hve x2np d

xn+lP as n. This gives Ax2n+lp and Bx2n+2p n. Since p,
p A(C) and p B(C), so there exist v, w C such that Av p and Bw p. Now

d(x2n, P) d(Ax2n + 1, Bw)

> (d(Ax2n + 1, x2n + 1), d(Bw, w), d(x2n + 1, w)).

Since is lower-semicontinuous, letting n oo gives d(p, p) >_ (0, d(p, w), d(p, w)) and by (C2)
we have 0 > h d(p, w). Hence p w. Also,
d(p, x2n + 1) d(Av, Bx2n + 1) > (d(Av, v), d(Bx2n + 2, x2n + 2), d(v, X2n + 1))"
Letting n-oo gives d(p, p)_> (d(p, v), 0, d(v, p)) or, by (C2) 0 _> h d(p, v). Hence p v.

Therefore, Ap Av p Bw Bp.

COROLLARY 2. Let A and B map C, a closed subset of X, into (onto) X such that

C C A(C), C C B(C), and d(Ax, By) _> a d(Ax, x)+ b d(By, y) + c d(x, y) for all x, y 6 C, where

a, b, and c are non-negative real numbers with a<l, b<l, and a+b+c>l. Then A and B
have a common fixed point in C.

The proof of Corollary 2 is identical to the proof of Corollary 2.3 in [9].

In [7], Kang defined q* to be the family of all real functions o--, (R+)3--. R + satisfying
condition (C1) and the following condition:

(C3) Let v, w 6 R + {0} be such that either v > qo(v, w, w) or v > qo(w, v, w). Then v > hw,
where p(1, 1, 1) h > 1. Kang showed that the family q* is strictly larger than the family .

THEOREM 7. Let (X, t, d) be a d-complete Hausdorff topological space where d is a

continuous symmetric. If A and B are continuous mappings from C, a closed subset of X, into X
such that C C A(C), C C B(C), and d(Ax, By) > (d(Ax, x), d(Sy, y), d(x, y)) for all x, y e C
such that x #-y where o q*, then A or B has a fixed point or A and B have a common fixed

point.

PROOF. Let {Xn}n=0 be defined as in the proof of Theorem 6. If xn xn + for some n

then A or B has a fixed point. Suppose xn # xn + for all n. As in the proof of Theorem 6,
oo and {X2n } x oo and hencexnp as n--,oo. Now {X2n}n=0 + n=0 are subsequences of n}n=l

each converges to p. Since A and B are continuous, Ax2n + X2n Ap and

Bx2n + 2 X2n + Bp. Limits in X are unique, because X is Hausdorff, so Ap p Bp.
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C()R()LLARY 3. L(’t A and B bc continuous mappings from C, a closed subset of X, into X
sat,sfying C C A(C), C C B(C),tim d(Ax, By) h lnin{d(Ax, x), d(By, y), d(x, y)} for 11 x,

yC with x#y where h> 1. Tlwn A or B has afixcd l)oint or A and B have a common fixed

point.

PROOF. Note that (tl, t2, ta) hmin{t, 2. t3}, h > is in ’I’*. Apply Thcol,’m 7.

If A B in Corollary 3 w. get a generalization of Theorem 3 in [9].
Boyd and Wong [10] (’all the collection of all real functions :+ + vhich satisfy the

follmvng onditaons :
(C4) is ut)I)er-semicontinuous and non-decreasing,

(C5) (t)<t for eacht>0.

THEOREM 8. Let (X, t, d) be a d-complete symmetric Hausdorff topological space. If A
and B are continuous mappings from C, a closed subset of X, into X such that C C A(C),
C C B(C), and (d(Ax, By)) >_ ,nin{d(Ax, x), d(By, y), d(x, y)} for all x, y G C where , e and

cn 0 l’)n(t) < oo for each > 0, then either A or B has a fixed point or A and B have a

comnon fixed point.

PROOF. Let {xn}n=0 be defined as in the proof of Theorem 6. Ifxn=Xn+l for some n

then A or B has a fixed point. Suppose xn xn + for all n. Then

’(d(x2n, X2n + 1)) (d(Ax2n + 1, Bx2n + 2))

_> min d(Ax2n + 1, x2n + 1), d(Bx2n + 2, X2n + 2), d(x2n + 1, x2n + 2)

min{d(x2n, X2n+ 1), d(x2n + 1, X2n+2), d(x2n + 1, X2n +2)}

d(x2n + 1, X2n + 2)

since (t) < for all > 0.

Similarly, d(x2n + 2, X2n + 3) -< (d(x2n + 1, X2n + 2)) and hence d(x + 1, Xn + 2) -< (d(xn, Xn + 1))
for each n. Since is non-decreasing, d(x + 1, Xn + 2) -< n(d(x0, x)). Now

E d(xn, Xn + 1) --< E n(d(x0 Xl)) < cxz.
n=0 n=0

The space X is d-complete so there exists p C such that Xn p as n- cx. The mappings A
and B are continuous so Ax2n + X2n Ap and Bx2n + 2 X2n + Bp. Limits are unique so

Ap p Bp.
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