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1. INTRODUCTION.

Let (X, t) be a topological space and d : X x X — [0, 0o) such that d(x, y) = 0 if and only if
x=y. X is said to be d-complete if Y °_ | d(Xs, X, ) <oco implies that the sequence
{xn}3°% | is convergent in (X, t). Complete metric spaces and complete quasi-metric spaces are
examples of d-complete topological spaces. The d-complete semi-metric spaces form an
important class of examples of d-complete topological spaces.

Let X be an infinite set and t any T, non-discrete first countable topology for X. There

exists a complete metric d for X such that t <t; and the metric topology t; is non-discrete. Now

oo
n=1

Thus, x, — X, as n — 00, in t; and therefore in the topology t. The construction of t; is given by
T. L. Hicks and W. R. Crisler in [1].

Recently, T. L. Hicks in [2] and T. L. Hicks and B. E. Rhoades in [3] and [4] proved several
metric space fixed point theorems in d-complete topological spaces. We shall prove additional

(X, t, d) is d-complete since Y o°_; d(xp, X, ;) < oo implies that {x,} is Cauchy in tg.

theorems in this setting.
Let T : X — X be a mapping. T is w-continuous at x if x,, — x implies Tx,, — Tx as n — oo.
A real-valued function G:X — [0, 00) is lower semi-continuous if and only if {x,}5° ( is a

sequence in X and lim_x, = p implies G(p) < lim, inf G(xp)-

2. RESULTS.
In [2], Hicks gave the following result.

. THEOREM ([2], Theorem 2): Suppose X is a d-complete Hausdorff topological space,
T: X — X is w-continuous and satisfies d(Tx, T?x) < k(d(x, Tx)) for all x € X, where
k:{0, 0o0) — [0, o0), K0) =0, and k is non-decreasing. Then T has a fixed point if and only if
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there exists x in X with Y~ X_ | #(d(x, Tx)) <oc. In this case, x, = T"x > p = Tp. [kis not
assumed to be continuous and A*(a) = k(k(a)).]

The following conditions are examined. Let T:C— X with C a closed subset of the d-
complete topological space X and C C T(C). Let k: [0, 0o) = [0, 00) be such that &0) =0, kis

non-decreasing. and

Kd(Tx, Ty)) 2 d(x, y) (2.1)
for all x, y € C, or

d(Tx, Ty) > Kd(x, y)) (2.2)
for all x,y € C, or

d(x, y) > Kd(Tx, Ty)) (2.3)
for all x, y € C, or

kKd(x, y)) > d(Tx, Ty) (24)

for all x, y € C.
It will be shown that condition (2.1) leads to a fixed point, but that the other three conditions do

not guarantee a fixed point.

THEOREM 1. Suppose X is a d-complete Hausdorff topological space, C is a closed subset
of X, and T: C — X is an open mapping with C C T(C) which satisfies d(x, y) < k(d(Tx, Ty)) for
all x, y € C where k: [0, oo) — [0, oc), k(0) =0, and k is non-decreasing. Then T has a fixed
point if and only if there exists xy € C with Y _°_ | #*(d(Tx, xg)) < co.

PROOF. Notice that the condition d(x, y) < k(d(Tx, Ty)) forces T to be one-to-one. Hence
T ~ ! exists. Also, T is open implies that T —1is continuous, and thus w-continuous.

If p=Tp then Y °_ , ¥*(d(Tp, p)) =0 < co.

Suppose there exists xg € C such that ) °_, ¥*(d(Txj, x¢)) <oco. We know that T-!
exists, so let T{ be T ~! restricted to C. Then T;:C — Cand d(Tx, T;y) < kd(x, y)) for all x,
y€C. Let y = T;x. Then d(Tx, T%x) < Kd(x, T x)) for all x € C. In particular,
d(Txq, T2xg) < Kd(xg, T%g)) < K(d(Txg, X)). By induction,

d(TT ~ 1xy, Thxg) < K*(d(Txg, X,))- Thus,

[o.o] [o.2]
kgld(rrrll— 1"0’ 711)(0) < kzlkn(d(Txo, xo)) < 00.

Since X is d-complete, TTx, converges, say to p. Note that p is in C since C is closed. Now
T1(TTxg) = T1p as n — oo since T} is w-continuous. But T’l"on—-»p as n — 0o, and since
limits are unique in X, Typ =p. Now T(Tp) = T(p) and T(T;p) =p so Tp=p and T has a
fixed point.

COROLLARY 1. Suppose T:C — X where C is a closed subset of a d-complete Hausdorff
symmetrizable topological space with C C T(C). Suppose d(x, y) < [d(Tx, Ty)]? where p > 1 for
all x, y € C. If there exists x; € C such that d(Txg, xg) < 1, then T has a fixed point.

PROOF. Ifx #y, 0 <d(x, y) < [d(Tx, Ty)]? and Tx # Ty. Thus T is one-to-one and T ~ !
exists. -Now d(T~1x, T~ ly) <[d(x, y)]” implies that T~! is continuous. Hence T must be



FIXED POINT THEOREMS IN A TOPOLOGICAL SPACE 105

open. Let xi be a point in € such that d(Txy. xy) < 1. If d(Tx. x4) = 0. then x; is a fixed point
of T. Suppose 0 < d(Txy. xy) <1. Let k(t) =t and t = d(Tx. x). Note that (at)” < ot? if
0 <a<1. Since tP <t. there is an ap € (0. 1) such that t7 =« t. Now (t”)” < t” and there is
an a, € (0. 1) such that 2 = aytl. But ayt? = 2P = (PP = ()’ <o tl. Henee ay < ay.
Now t2P = ayt? = ay0t < (()1)2t. Assume " < allt. Then
¢+ hr - (" < (o) = PP = aflat = rv(l" +UPt Hence. by induction. t" < af't for all

natural numbers n. Therefore.

2.9
> K(A(Txy. xq)) E [d(Tx. x)]"P = Z t"P < Z aft <oo

n=1 n= n=1 n=1
since 0 <y < 1. Applying Theorem 1, we get that T has a fixed point.

If T is not open one could check the following condition.

THEOREM 2. Let X be a d-complete Hausdorff topological space, C be a closed subset of
X, T:C — X with C C T(C). Suppose there exists & : [0, co) — [0, 0o) such that
k(d(Tx, Ty)) > d(x, y) for all x, y € C, k is non-decreasing, k(0) = 0, and there exists xy € C such
that Y2 K*(d(Txg, xy)) < oo. If G(x) = d(Tx, x) is lower semi-continuous on C then T has a
fixed point.

PROOF. If x #y, 0 <d(x,y) < Md(Tx, Ty)) so that d(Tx, Ty) # 0. Hence T is one-to-one
and T~ ! exists. Let T beT™ ! restricted to C. Now T,:C — C and for x € C,
d(x, T;x) < k(d(Tx, x)), d(Tx, T2 < E(d(x, Tyx)) < K(d(Tx, x)) By induction,
d(T"_ Ix, T ) < EYM(d(Tx, x)). Thu( exists xg € C with )90 K*(d(Txg, xp)) < oo implies

i d(Tl xo, TTxy) <oo. Since X is d-complete there exists p € X such that T{xy— p as

n —oco. Note that p € C since TTx, € C for all n and C is closed. Now G(x) = d(Tx, x) is lower
semi-continuous on C gives G(p) < lim inf G(T}x) or d(Tp, p) < lim inf d(T7 ~ lxo, TTxg,) = 0.
Thus Tp = p.

In [5], Hicks gives several examples of functions k which satisfy the condition of theorem 1 of
that paper. These examples, with a slight modification, carry over to the non-self map case. The
non-self map version of Example 1 is given for completeness. The other examples carry over in a

similar manner.

EXAMPLE 1. Suppose 0 <A< 1. Let k(t) =Mt for t >0. If d(x, y) <Ad(Tx, Ty), T is
open since T —1 exists and is continuous. Let x € C There exists y € C such that Ty = x. Now
d(x, y) = d(Ty, y) S Md(T%, Ty)  and w1 F(d(Ty, ¥) < 35 1 A"d(T?y, Ty) < oo,
Applying Theorem 1 we get a fixed point for T. (Note: d(x, y) <Ad(Tx, Ty) for 0<A<1is
equivalent to d(Tx, Ty) > ad(x, y) for a > 1.)

The following examples show that conditions (2.2), (2.3) and (2.4) do not guarantee fixed

points.

EXAMPLE 2. Let R denote the real nnumbers and CB(R, R) denote the collection of all

bounded and continuous functions which map R into R. Let

C={fe CB(R,R):{(t) =0 for all t <0 and %imoof(t) >1}.
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Then

»ut, as shown in [6], T does not have

Define T : C — CB(R. R) by Tf(t) = %f(t +1) aud let k(t) =
d(Tf, Tg) = %d(f, g) > Kd(f, g)). ksatisfics condition (2.2)

a fixed point.

o ol

EXAMPLE 3. Let T:[1. oo) = [0, 0o) be defined by Tx =x —,l( and let A(t) = % Then
A(Tx, Ty) £2d(x, y) or d(x, v) > kd(Tx, Ty)). k satisfics condition (2.3) but T docs not have a

fixed point.

EXAMPLE 4. Let ¢y denote the collection of all sequences that converge to zero. Let
C={x€c¢y:xi=1and xy=1}. Define T:C — ¢; by Tx =y where Yn=%X,4p0=0,1,2,..,
and let k(t) = 2t. Then d(Tx, Ty) =d(x, y) <2d(x, y) = kd(x, y)) for all x, y € C. k satisfies
condition (2.4) but, as shown in [6], T does not have a fixed point.

The following theorems were motivated by the work of Hicks and Rhoades [3].

THEOREM 3. Let C be a compact subset of a Hausdorff topological space (X, t) and
d: X xX — [0, co) such that d(x, y) =0 if and only if x =y. Suppose T : C — X with C C T(C),
T and G(x) = d(x, Tx) are both continuous, and d(Tx, T?x) > d(x, Tx) for all x € T ~}(C) with
x # Tx. Then T has a fixed point in C.

PROOF. C is a compact subset of a Hausdorff space so it is closed. T is continuous so
T~ }(C) is closed and hence is compact since T~ }(C) C C. G(x) is continuous so it attains its
minimum on T~ }(C), say at 2. Now z € C C T(C) so there exists y € T~ }(C) such that Ty = z.
If y # 2 then d(z, Tz) = d(Ty, T%y) > d(y, Ty), a contradiction. Thus y =z = Ty is a fixed point
of T.

THEOREM 4. Let C be a compact subset of a Hausdorff topological space (X, t) and
d:XxX — [0, o) such that d(x, y) =0 if and only if x =y. Suppose T : C — X with C C T(C),
T and G(x) =d(x, Tx) are both continuous, f: [0, co) — [0, co) is continuous and f(t) >0 for
t #0. If we know that d(Tx, T2x) < Af(d(x, Tx)) for all x € T ~1(C) implies T has a fixed point
where 0 <A <1, then d(Tx, T%x) <f(d(x, Tx)) for all x € T~ Y(C) such that f(d(x, Tx)) # 0
gives a fixed point.

PROOF. C is a compact subset of a Hausdorff space so it is closed. T is continuous gives
that T~ 1(C) is closed, and T~1(C)Cc C so T~1(C) is compact. Suppose x # Tx for all
x €T~ Y(C). Then d(x, Tx) >0 so that f(d(x, Tx)) >0 for all x€ T ~!(C). Define P(x) on
_ d(Tx T%)
~ f(d(x, Tx))’
attains its maximum on T ~(C), say at z. P(x) < P(z) <1 so d(Tx, T?x) < P(z)f(d(x, Tx)) and
T must have a fixed point.

T~ (C) by P(x)

P is continuous since T, f and G(x) are continuous. Therefore P

THEOREM 5. Let C be a compact subset of a Hausdorff topological space (X, t) and
d:XxX — [0, 0o) such that d(x, y) =0 if and only if x =y. Suppose T :C — X with C c T(C),
T and G(x)=d(x, Tx) are both continuous, f: [0, co) — [0, 00) is continuous and f(t) >0 for
t #0. If we know that d(Tx, T?x) > A f(d(x, Tx)) for all x € T ~1(C) implies T has a fixed point
where A > 1, then d(Tx, T2x) > f(d(x, Tx)) for all x € T ~1(C) such that f(d(x, Tx)) # 0 gives a
fixed point.
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PROOF. C is a compact subsct of a Hausdortf space so it is closed. T is continuous gives
that T~ ](C) is closed and hence compact, since T~ YC)cC. Supposc x # Tx for all
_ d(Tx, Tx)
T f(d(x Tx))”
since T, f and G are continuous. P attains it minimum on T~ ‘(C), sav at z. P(x) > P(z) >1so0
d(Tx, T?x) > P(2)f(d(x, Tx)) and T must have a fixed point.

Theorems 6, 7 and 8 arc generalizations of theorems by Kang [7]. The following family of

x € T~ YC). Then d(x. Tx) > 0 and f(d(x, Tx)) > 0. Define P(x)

P is continuous

real functions was originally introduced by M. A. Khan, M. S. Khan, and S. Scssa in [8]. Let @
denote the family of all real functions ¢ : (R1)% = R+ satisfying the following conditions:
(Cy) ¢ is lower-scmicontinuous in each coordinate variable,
(Cy) Letv,we R * be such that cither v > ¢(v, w, w) or v > ¢(w, v, w). Then
v > hw, where ¢(1,1,1) =h > 1.

THEOREM 6. Let (X, t, d) be a d-complete topological space where d is a continuous
symmetric. Let A and B map C, a closed subset of X, into (onto) X such that C C A(C),
C c B(C), and d(Ax, By) > ¢(d(Ax, x), d(By, y), d(x, y)) for all x, y in C where ¢ € . Then A

and B have a common fixed point in C.

PROOF. Fix xj€C. Since CC A(C) there exists x; € C such that Ax; =x,. Now
CCB(C) so there exists xo€ C such that Bxy=x;. Build the sequence {x,}5°_¢ by

Ay, 11 = Xgp, BXg, 4 9 =X%g, 1. Now if x5, | =Xy, for some n, the x,,, 41 is a fixed point of
A. Then

d(x9p 4 1> Xon 4 1) = d(Xops X954 1)
= d(Axgp 4 1, BXgp 4 9)
2 ¢(d(Axg, 4 15 Xon 4 1)» d(BxXgp 4 95 Xon 4 2), d(Xap 4 1> X2n 4.2))
= 6(0, d(x9n 4 1» X9n 4 2)» A(X2n 4 1 X2n 4 2))

By property (Cy), d(xgy, x2n+1) >h d(x2n+l, x2n+2). Hence, Xon41=Xon 42 and
Bxg, 1 =Bxgy 49 =%g, 41+ Therefore x9, , | is a common fixed point of A and B. Now if
Xop +1=Xop 42 for some n, then Bxy, , 9 = Bxy, , | =Xg, ;9. Then

d(x9p 4 9) Xon 4 1) = d(Axgy, 4 3, Bxgp 4 o)
> ¢(d(Axgp 4 3, Xon 4 3), d(BXop 4 9, Xan 4 9), d(Xop 4 3 X954 2))
= ¢(d(Xgn 4+ 29 Xgn +3)s A(X2n 4 1> Xgn 4 2)> A(X9n 4 30 Xon 4.2))-

By property (Cp) , d(Xpn415 Xon42) 2hd(Xgni2 Xgn43)OF Xgnyp=Xgnyg  Thus
Axg, 9= AXy, 4 3= X9, 4 9 and X9, | 9 is a fixed point of A also.
Suppose x, # x, , | for all n. Then

d(xgy,, Xop 4 1) = d(AXg, 4 1, Bxg, 1 9)
> $(d(Axgp 4 15 Xop 1), d(Bxgy 4 9, Xon 4 9)s d(X9p 4 15 Xon 4 2))

= ¢(d(xgn, Xon 4 1)) d(Xop 4 1> X2 4 2)> d(Xop 4 1) X2n 4 2))-
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Again by (C‘.!)’ d(x2n’ Xon + l) 2h d(x‘.!n + 1 Xon 4 2) or d(x‘.!n +1 Xon 4 2) < Ill‘ d(x‘zm Xon + l)'
Also,

d(x9y 4 1 X9 4 9) = d(Axy, 4 3, Bxy, 4 o)
2 ¢(d(Axg, 4 3, Xon 4 3), d(Bxgy 4 9, Xop 4 0)s d(Xgy, 4 3 Xop 4 2)

= ¢'(d(x2n +2 Xon 4 3)’ d(x2" + 1 Xon 4+ 2)’ d(x2n +3 Xon + 2))

By (Cy) we get d(xgp, 4 9, X954 3) }1—ld(x2n+ 1> X9n 4 9)- Induction gives

1 n+1 00 00 1 n+1
d(x, 4 1) Xp 4 9) S(H) d(xg, x1). Thus Zld(xn+ 1 Xns2) S El(}—l) d(xg, x1) <o00. X
n= n=

is d-complete so x, —p as n — oo where p € C, since C is closed. We also have x5, = p and
Xgn4+1—P as n—oo. This gives Axy,,; —p and Bxy, ,o—p as n—oo. Since peC,
p € A(C) and p € B(C), so there exist v, w € C such that Av =p and Bw =p. Now

d(xg,, P) = d(Ax2n+ 1» Bw)
> ¢(d(Ax2n+ 1 Xon 4 1), d(Bw, w), d(x2n+ b W)

Since ¢ is lower-semicontinuous, letting n — co gives d(p, p) > ¢(0, d(p, w), d(p, w)) and by (C,)
we have 0 > h d(p, w). Hence p =w. Also,

d(p, Xon 4 1) =d(Av, Bx2n+ 1) = ¢(d(Av, v), d(Bx2n+2, x2n+2), d(v, Xon 4 )

Letting n — oo gives d(p, p) > 4(d(p, v), 0, d(v, p)) or, by (Cy), 0>hd(p, v). Hence p=v.
Therefore, Ap = Av = p = Bw = Bp.

COROLLARY 2. Let A and B map C, a closed subset of X, into (onto) X such that
C C A(C), Cc B(C), and d(Ax, By) > ad(Ax, x) + bd(By, y) + cd(x, y) for all x, y € C, where
a, b, and ¢ are non-negative real numbers with a<1, b<1, and a+b+c>1. Then A and B
have a common fixed point in C.

The proof of Corollary 2 is identical to the proof of Corollary 2.3 in [9).

In [7], Kang defined &* to be the family of all real functions ¢ — (R*)3 - R+ satisfying
condition (C;) and the following condition:
(C3) Let v, weR™ — {0} be such that either v > ¢(v, w, w) or v > ¢(w, v, w). Then v >hw,
where ¢(1, 1,1) =h > 1. Kang showed that the family ®* is strictly larger than the family ®.

THEOREM 7. Let (X, t, d) be a d-complete Hausdorff topological space where d is a
continuous symmetric. If A and B are continuous mappings from C, a closed subset of X, into X
such that C C A(C), C C B(C), and d(Ax, By) > ¢(d(Ax, x), d(By, y), d(x, y)) for all x, y€ C
such that x # y where ¢ € ®*, then A or B has a fixed point or A and B have a common fixed

point.

PROOF. Let {xp};°_ o be defined as in the proof of Theorem 6. If x, =x, | ; for some n
then A or B has a fixed point. Suppose x, #x,,, | for all n. As in the proof of Theorem 6,
Xp—Pp as n—o00. Now {x9,}3°_¢ and {xg, , ;}5°— ¢ are subsequences of {x,}7°_; and hence
each converges to p. Since A and B are continuous, Axy,,; =Xy, —Ap and

Bxy, 4 9 = X9, ;1 — Bp. Limits in X are unique, because X is Hausdorff, so Ap = p = Bp.
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COROLLARY 3. Let A and B be continuous mappings from C, a closed subsct of X, into X
satisfying C C A(C), C C B(C) and d(Ax, By) > hmin{d(Ax, x), d(By, y), d(x, v)} for all x,
y € C with x # v where h > 1. Then A or B has a fixed point or A and B have a common fixed

point.

PROOF. Note that o(t), ty, tg) = hminf{t,, t,. ty}, h > 1is in ¢*. Apply Theorem 7.

If A =B in Corollary 3 we get a generalization of Theorem 3 in [9).

Boyd and Wong {10] call the collection of all real functions ¢ : R+t — Rt which satisfy the
following conditions ¥:
(C4) ¥ is upper-semicontinuous and non-decreasing,
(Cs5) ¥(t) <t for cach t > 0.

THEOREM 8. Let (X, t, d) be a d-complete symmetric Hausdorff topological space. If A
and B arc continuous mappings from C, a closed subset of X, into X such that CC A(C),
C C B(C), and y(d(Ax, By)) > min{d(Ax, x), d(By, y), d(x, y)} for all x, y € C wherc 3 € ¥ and
Z‘,’loz g ¥"(t) <oo for cach t >0, then cither A or B has a fixed point or A and B have a

common fixed point.

PROOF. Let {x,}3°_ ; be defined as in the proof of Theorem 6. If x, = x
then A or B has a fixed point. Suppose x, # x,, , | for all n. Then

nal for some n

P(d(x9,,, X9, + )= ¢(d(Ax2n+ D Bx2n+2))
> min{d(Axg, 4 1, X95 4 1)s d(BXgy, 4 9, Xon 1 9), d(Xop 4 15 X2p 4 2)}
= min{d(Xgn, X9, 4 1), d(Xgp, 4 15 Xop 4 2), d(X9p 4 15 X2p 42)}

= d(X9p 4 1> Xon 4 2)

since 9(t) < t for all t > 0.

Similarly, d(x9,, 4 9, X9, 4 3) < ¥(d(X9,, 4 1, X9, 4 9)) and hence d(x, 4 1, X,, ;. 9) < ¥(d(Xp, X, 1 1))
for each n. Since 3 is non-decreasing, d(x,, ; 1, X, 1 9) < Y™(d(xg, x1)). Now

5 dn %0 1) € §E 97l x) <00

The space X is d-complete so there exists p € C such that x, = p as n — co. The mappings A
and B are continuous so Axy, , | = X9, — Ap and Bxy, , 9 = Xg,, ; — Bp. Limits are unique so

Ap =p=Bp.
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