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ABSTRACT. In this paper we study the boundedness and convergence of cr (f) and s(f), the

elliptic Pdesz operators and the conjugate elliptic Riesz operators of order s > 0, on the weighted special
atom space B(w).
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I. INTRODUCTION.
Let R" be n-dimensional Euclidean space and Z" be the unit lattice in R". The n-Toms T" is

the coset space R"/(27rg"), Q" {z (Zl, ..,Xn) 0 < xk 27r, 1 < k < n}. Let A(D) be a self-

adjoint elliptic differential operator with real coefficients defined on C (Rr’), A(D) _, a,D’, where

D c9I1/0z ...0xn, c (cq,..., Cn) is multi index and Icl ca + + c. we awys assume

that the set {z E R"’A(z)< 1} is convex and its boundary has non-vanishing Gaussian curvature

everywhere.
The elliptic Riesz operators and the conjugate elliptic Riesz operators of order o > 0 are defined

respectively by

r(f,x) Z (I- A(m/r))S+?(m)e (1.1)
mEZ

where

5(f,x) (1 A(m/r))S+7(m)ff(m)eirr= (1.2)
rnEZ

f(m) (27r) f(x)e-’ma:dx,

are the multiple Fourier coefficients of f, K(z) P(:r,)/Izl"+’r’(:r, 0) is a kernel with a homogeneous
and harmonic polynomial P(z) of order m, and is the conjugate function of f with respect to the
korno K(). :/ max(0,:). IfA() II, o,’(f), (f) is just the usual Bochner-Riesz mean.

The maximal elliptic Riesz operators defined by

crs (f, z) sup lo,’(f, )I,:(f, ) sup Is," (f, )I.
r>0 r>O

In this paper, using the weighted special atom space B(o), we will study the boundedness and

convergence ofcr (f) and #, (f) for all s > 0 and n 1.
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We rewrite B(w) which was introduced in [4]

B(w) f" r R’,f(t)= Ckb(t), [C[ < oo
k=0 k=0

each b is a weighted special atom, that is, a real valued function b, defined on T [0, 27r], which is

either b(t) 1/(27r) or b(t) (IC21)-/a. [xn(t) xL(t)], 1 < q < oo, where Q is an interval in T, L
is the left half ofQ and R is the fight half, IC21 denotes the length of Q, X0 the characteristic function of

Q and w is a non-negative real valued function which is increasing, and to(0) 0. B(w) is endowed with

the norm [[f[[/(,)= inf/ [C,[, where the infimum is taken over all possible representations of
k=0 )

B(w) is a Banach space.
A function w" [0, oo) [0, oo) is said to be in the class bx (0 < A < oo), if it satisfies

() ,(0) 0,

(2) w is non-decreasing,

w(t)/t is decreasing,

(4) fow(t)/tdt < Cw(h), C an absolute constant,

(5) f(t)/ta+dt < Cw(h)/hx with C independent of h and w.

Example of functions in the class bx are to(t)=t (0< a < 1) and co(t)=ff’(log(e/t)),
(o < c, < ;, 3 _> o).

We also define the space L(b) be L(b) {f" T -* R’, ll/ll, < oo}, where

[[f][ (fT (f*(t))qqb(t)dt)Uq, 1 <_ q < oo and f* is the decreasing rearrangement of f, defined by

f*(t) =inf{y" [{z" If(x)[ > /}[ _< t}, the outside bars means the Lebesgue measure of the set

{z" [f(z)[ > y}, b is a non-negative decreasing function. [1-[[ is a norm if and only if b is a

non-negative decreasing function. L(O) is a Banach space, If w(t)= (q/p)tq/p, 1 < q < p < oo,

b(t) w(t)/t, then the space L(b) is the Lorentz space L(p, q) in [6,7].
The main result ofthis paper is stated as follows:
THEOREM 1. Suppose o bx, 1 < A < oo, b(t) w(t)/t, then a’(f) is oftype (B(a), L(b))

for all > 0, that is,

IIo(1)II, _< clI/ll<), f B().

COROLLARY I. Suppose co b,, 1 _< < oo, and f B(), then r(f, z) converges to f(z)
almost everywhere for all s > 0.

TBEOREM 2. Suppose w b, 1 <_ A < oo, (t) ()/, then (f) is oftype (B(w),L())
for all > O, that is,

ll(f)ll -< cll?ll ( ) < Cllfll(), f

COROLLARY 2. Suppose to bx, 1 _< A < oo, and f B(w), then S(f, x) converges to (z)
almost everywhere for all > 0.

REMARK 1. When n 1, A(e) Il2, ," (f, ) become

cr(f,z) E (1- ([kl/r)z)")(k)ei (1.3)
II<

As s ---+ 0, (1.3) become the partial sums of Fourier series of f, when a I/2, (1.3) are essentially

equivalent to the classical Ceshro means. Consequently, the main result in [5,6] become a special case of
our results.

REMARK 2. For the maximal (C, c) operators T are defined by

T(f,x) sup Icr.(f,x)l (1.4)

where
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since (C, a) kernels

o(f,x) _1 r/ f(t)K,(x t)dt,O’n
7 J_

g(t) o-1 (t)/AAn_kDk
k=O

satisfies

An An
<

Ig2(t)l _< (1 + nt)(1 + (nt)) 1 + nt

CIItl

0<a<l, 0<t<Tr,

a 1, 0 < Itl _< 7r,

thus using the same methods for (t) w(t)/t we can prove

IITflI _< ClIflIB<,), / B(w), 0 < a < 1.

(1.5)

PROOFS OF THEOREMS
PROOF OF THEOREM 1.

(B(to), B(w)). Consequently,type
[w(2h)]-l/q[x[_h,o)(t -X[o,h](t)],h_ > 0 which will follow from the estimate for g(t)= XtO,h](t). Let

H(z) (2r)-1 fRt (1 A(V))+ edy, s > O, H1/r(z) rH(rx), then ar(f,x) (f.K1/)(z),
where

Let f(z)= f(z-a), then the operator Tar fa is of

we just need to prove the result for fh(t)

la,.’(g,x)l g(y)K/,(x- y)dy K1/,(x y)dy <_ IK1/r(t)ldt
-h

<_ C + rt)-dt < Ch(x- h)- < 2Ch/x,

for x > 2h, and la(g,x)l <_ 2Ch/x for x < 2h. On the other hand, we have

/0I(, )1 _< Igl/(- u)ldu _< IHI/( /2- u)l

Inl/r(y)ldy < C (1 + Itl)-(’+)dt < oo.

Consequently, we have

aS(g,x)l _<
2Ch/Ixl,

Let (t) w(t)/t. By (2.1) and the conditions on w, we get

for all x,
for Ixl > 2h. (2.1)

Thus

We may assume r > 1. By the inequality (see [2]):

IH()I _< C(1 + I1)--we get

[K1/r(x)[ < Cr (1 + rl2kTr + x[) -(8+1) < Cr(1 + rlx[)-(+1)

K1/r(x) E H1/r(x + 2kr).
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f0
2h

Ilo’(g)ll ((o())’():()/a <_ a ()/

+ (2Ch)’ w(x,)/x(’+ldz <_ CA’(2h) + (2h)’(w(2h)/(2h)) Cw(2h).

The constant C may not be the same at every occurrence in this paper. Thus

II(A)ll < 2w(2)-<v>,ll()ll < c’ and so iff B(), then f(t) , Ckbk(t), where
k=0

and Y] [Ck[ < oo, we have [[as(f)[[, _< C [Ck[, which implies ][a’(f)[[ _< cllYll.<). The proof is
k=O k=O

complete.

PROOF OF COROLLARY 1. Let

w(f,x) lim sup [cr, (f,x) asr (f, x)[, rl, r2 > r (2.2)
then w(f, x) _< 2a (f, x) and so

II(f)ll (((f) (x))qw(x)/xdx _< 2 ((os(f)
J0

2ll’(f)l]. (2.3)

Since f B(w), then f(x) Ckb(x), where [C[ < oo and the b are weighted special atoms.
k---- k=O

By Theorem and (2.3), c:(f) L(b) which implies w(f) . L(ck) for ok(t) w(t)/t. On the other

hand, we see that w(f) w(f- fro) where f,.r,(x) Ckbk(x) and ][f,,, f[[z(,,) 0 as rn oo.

Then
=o

co(f, x) (f fro, x) _< 2y (f fro, x).

By Theorem 1,

ll(f)ll _< 211’(f- f,,,)ll -< 2Cllf- fmllB(,,,).

So letting m - oo, we get Ilw(f)ll 0. Thus w(f,x) 0 almost everywhere, which implies c.(f,x)
converges to f(x) almost everywhere. The proof is complete.

Let f E B(w), then f(x) Ckbk(x), where Y] ICl < oo and the bk are weighted special
k---O k=O

atoms. Thus ?(z)= E C<z) and so II]ll < ) -< Ilfll<,>. Now using #(f,x)= cr(],x) and

Theorem 1, we can similarly show that Theorem 2 and Corollary 2. The details will be omitted.

REMARK 3. Theorem and 2 are also true if we replace the above (11) by a weight
w(Q) fQw(x)dx, where w in Aoo, the proofs are the same.
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