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ABSTRACT. Suppose X is a real or complex Banach space with dual X* and a semiscalar product

]. For k a real number, a subset B ofX X will be called k-dissipative if for each pair of elements

(za, V), (z2, V2)in B, there exists

such that

Rely1 Y2, h] < 1 212.
This definition extends a notion of dissipativeness which is equivalent to having k equal zero here.

A number of definitions and theorems related to this original disspative notion are generalized in the

present paper to fit the k-dissipative situation, and proofs are given for the new theorems.
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1. INTRODUCTION.
The basic outline ofthis paper follows Yosida [5], and results stated there are expanded to fit

the more general situation presented here. Suppose X is a real or complex Banach space endowed
with a semi-scalar product such that for a,/5 real numbers and a:, F, z elements ofX,

[ + u, ] [,] + [, ],
I[x, y]l _< Ixl- lyl and

The equations below give some notation conventions used here. The sets B and (7 below are subsets

ofX x X and A is a real number.
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D(B) {x: (x, y) 6 B for some
R(B) {y (x, y) 6 B for some x}.
B - {(u, x): (x, u) B }., {(x, u): (x, u) e }.

B + C { (x, y + z): (x, y) e B and (x, z) e C}.
Ba {(x- Ay, y): (x, y) e B}.
B x {y: (x, y) e B) where x D(B).

]Bx] inf{]y: y e Sx}.
Bff (I AB)- where A is such that the

stated inverse is uque.

A simple consequence ofthis notation is the following.

COROLLARY 1.1. ABx B -I.

PROOF.

B I {(x- Ay, x- (x- Ay))" (x, y) e B}
{(x- Ay, Ay)" (x, y) B}

=ABe. [3

DEFINITION 1.2. The duality map from X into X* is the multi-valued mapping F defined for

ach x in X by

F(x) {f 6 X*" [x,f] Ixl [/[}.

(1.2)

(1.3)

According to the Hahn-Banach Theorem, F(x) is non-void. IfX is a I-Iilbert space, then

F(x) x by the Riesz Representation Theorem and [y, F(x)] is the inner product ofx and y.
DEFINITION 1.3. For a real number k, a subset B ofX x X will be called k-dissipative if for

each pair of elements (Xl, Yl) and (x2, y2) in B, there exists an element f in F(Xl x.) such that

Rely1- u2, f] < klxl- X2I2. (1.4)

DEFINITION 1.4. Let D be a subset ofX. The mapping T from D into X is Lipschitz with

Lipschitz constant k > 0 iffor each pair ofelements Xl, x2 from D,

(1.5)]Txl Tx21 <_ ]C,[Xl X2I.

LEMMA 1.5. Let x and y be elements ofX and suppose k is a real number. There is an element

f ofF(x) such that Rely, f] <_ klxl if and only if Ix- Ay] _> (1- Ak)lx] for each positive real number

A such that kl < 1/A.
PROOF. ff ixl 0, the lemma holds; so assume Ixl 0.

ffRe[y,f] <_ klxl for some f e F(x) and A is a positive number such that Ixl < 1/,x, then

< Re[x, f] ARe[y, f] (1.6)
Re[x- AV, f]

_< Ix-
Since f F(x), II Ifl and hence (1 ,X)ll _< I-

Now suppose (1 )II _< I- ul or each positive A such that II < I/. Let fx
and let hx fx/IAI so that hl 1. This gives
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Re[x Ay, hal
[,] [,,

< Ixl ARe[y, hx].

(1.7)

Hence Rely, h] _< klzl and

Rely, hal >_ ]x] Aklx + ARe[y,
I1- kll- lYllhl (1.8)

Ife > O and A < /(Iklll + I1 + 1), then

I1- < Re[x, hal < Ixllhl Ixl.

Thus limMo Re[x, h;,] Ix[.
Since the closed unit sphere ofX* is compact in the weak topology ofX’, the sequence (hi

has a weak" accumulation point h X* such that Ihl < 1. Therefore Re[x, h] Ixl, Re[y, hi <_ k,
and since

I1 Re[,hi < Ixllhl < Ixl, (I.I0)

[hi I. Consequently, f Ixlh F(x). I"1

COROLLARY 1.6. For a real number k, a subset B ofX X is k-dissipative if and only if

for each positive real number A such that [k < l/A, and elements (xl, yl ), (x2, y2) of B,

PROPOSITION 1.7. If k is a real number, B is a k-dissipative subset ofX X, and A is a

positive real number such that [kl < l/A, then Bx and Bf are both single-valued mappings and satisfy,

respectively, the following two inequalities:

2- Ak
IB,wl BAw21 <_ lw w21 for w,w D(Bx),and (1.12)

A(1- Ak)

Moreover, B is (k/(1 Ak))-dissipative and also satisfies both ofthe following:

BA w (BB)w B(Bw) for w D(B), and (1.14)

IB wl <_
1

1A--’- IB wl for all w D(B) f3 D(B). (1.15)

PROOF. Suppose Xl,X2 D(B), y Bxl and y2 Bx2. By Corollary 1.6,

(1.16)

proving (1.13) and
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1
IB,w, B,wl I(B I)w, -(B I)w=

1 1

<- +1 Iw wl1-k
2- Ak

A(1- A)

proving (I. 12). To show B and B are tingle-valued, suppose z A z2 A2. By CoroIl
1.6 again, 0 (1 A)z z=[. Thus z z2, and hccfo[e 2.

Now suppo w, c in hc domn ofBA. Suppose also lhal

(1.17)

f
_
F(wl w2) {f G X* "[wl w2, I] I w=l=

Then

(1.19)

Hence Bx is (k/(1 Ak))-dissipative. If (z, V) G B,

B,(=- A!/) 1 e B = B(B(x- !,1)) (B B)(z-

proving (1.14). For w G D(B) N D(B) and each z B w,

(1.20)

(1.21)

Thus since [B wl inf{ Izl" z B w}, (1.15) is proved, vI

LEMMA 1.8. Let B be a k-dissipative subset ofX X. IfD(B) X for some positive
real number A such that 1/A > [kl, then D(B#u) X for every positive real number/ such that

1 2- Ak
II < <

# A
(1.22)

PROOF. First note the following. Since A[k[ < 1, the inequality [kl < 1/A < (2 A[k[)/A holds.

Also, (1.22) leads to

< 1 II

Now suppose x G X. For each z G X, define the mapping T by

--Xq- Z (1.24)
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As a result of (1.13),

Hence T is a Lipschitz mapping with Lipschitz constant

1

1-- Ak #

1

1
#-A
#

<1. (1.26)

For n < rn and each point z E X,

IT"z T z <_ a T’-’z T zl
O (IT z- z[ + [Z2z- Zz[ +...)
a (1 + a + c +...)ITz zl

=(a-)--lZz-zl"

(1.27)

Hence, by the completeness of the space X, y lim,_ooT’z exists in X. Since a Lipschitz map is

continuous

Ty T( lim T’z lim T(T’z) lim T"+z y. (1.28)

Consequently,

Ax #- (y A )). (1.29)

Thus z (1/#)(y x) E B y and y #z x. Therefore Bx y. Since x was arbitrary,

D(B) X. !"!

THEOREM 1.9. Suppose B is a k-dissipative subset ofX X. IfD(B) X for some

positive number A such that Ikl < l/A, then D(B:) X for each positive real number # such that

I1 < 1/#.

PROOF. Construct a sequence as follows. Let ,1 =’. Ifboth i) a positive An has been chosen

so that Ikl < 1/m, and ii) D(B) X for each positive # such that Ik[ < 1/ < 1/A, then let A,+I
be the average ofAn and A,/(2 A, Ikl); that is let A,+I A,(3 A, lkl)/(4 2,11). Then

D(B) X for each positive # such that I1 < lh, _< x/A+.
CLAIM. lirn__,oo A, 0.

The claim holds if k 0, so suppose k 0. The claim is now equivalent to saying % ,X,,Ikl
approaches zero as n increases. Note that 0 < % Allkl < 1 and

: 3-7n " 1( 7, +7,,). (1.30,%+I=%\4_2%/ = -%
IfTn < 1, then 0 < %+1 < % < 1. Thus (%) is a strictly decreasing sequence, and as such has a limit

3’ -E 0,1) which is the greatest lower bound ofthe %’s. Suppose 7 > 0. For each real number x less
than 2, let f(x) x(3 x)/(4 21). Then f is a continuous function on (-oo, 2). Since f(’y) < 7,

there is a 6 > 0 such that for 7 < r/< 7 + 6, f(r/) < 7. For n large enough, however, 7 < % < 7 + 6

and 7,,+1 I"(7,) < 7, contradicting the fact that 7 is the greatest lower bound ofthe%’s. Thus 7 0,

proving the claim.
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Hence for # a positive number such that ]k] < 1/#, there is a positive integer n such that
A, < # and D(B)= X. !-I

DEFINITION I. 0. A k-dissipative subset B ofX x X will be called k-hyperdtssipative if

D(B) X for some (, and hence for each,) positive real number A such that Ikl < 1/A.
PROPOSITION I. 11. A k-hyperdissipative subset B ofX x X is maximally k-hyperdissipative

in the sense that there does not exist a k-dissipative subset C ofX x X such that B is a proper subset

ofC.
PROOF. Assume some k-dissipative subset C ofX x X contains B as a subset, and suppose

(xo, Yo) 5 C. Since B is k-hyperdissipative, there exists an element (x, y) ofB such that

1 1
xo Y0 x y. (l.31)

I:1 + 1 Ikl + 1

Having B as a subset ofC implies (x, y) E C. Applying Corollary 1.6 gives x0 x and Y0 Y. !-I

2. CONTINUOUS FAMILIES WITH A BOUNDING FUNCTION
Let a continuousfamily {Tt > 0} be a collection of possibly non-linear mappings from X

into X which are strongly continuous in (i.e. for each x E X, Ttx is continuous in ), and which satisfy

Tox 7x for some positive number 7. Finally, suppose that for some continuous function g from the

non-negative real numbers back into themselves,

i) (0) 7,

ii) limg(t)’" g(O)
exists, and

tt0

iii) ITtx- Ttyl < g(t)lx- yl for
each > 0 and all x, y in X.

(2.1)

Such a function g will be called a boundingfunction.
A continuous family {Tt > 0} with a bounding function g is a contraction semigroup ifthe

following three conditions are satisfied:

i) 7=1,
ii) g(t) < 1 for each > 0, and
iii) Tt Ts x Ts+t x for each x X,

and all non-negative s and t.

(2.2)

Contraction semigroups are discussed by Kato ], Kmura [2], [3], Crandall and Liggett [4],
Yosida [5], Miyadera [5] and many others. One goal ofthis paper is to show that even without the

properties (2.2), continuous families with a bounding function have many characteristics which parallel
those ofcontraction semigroups.

The infinitesimal generator A of a continuous family {Tt > 0} is given by

Tz- T0zA x lim (2.3)
tl0 t

ifthe limit on the fight exists. Let D(A) denote the domain ofA.
In this situation, an operator B from a subset ofX into X will be called k-dissipative if k is a

real number such that for each x and y in the domain of B,

Re(B x B y, x y> < klx yl2. (2.4)

THEOREM 2.1. The infinitesimal generator of a continuous family {Tt > 0} with a bounding
function g is g’(0)-dissipative.
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PROOF.

1 1Re(-(Ttx Tox)- -(Tty Toy), x-

1 1

1. 1
:Re(x y, x- y> :Re(Tox- Toy, x- y>

t
1 1

9(0) I- 1.
Thus for x and y elements of D(A), taking the limit ofthe first and last terms as decreases to zero gives

Re<Ax A y, x y) <_ g’(O)lx yl2. El (2.5)

One consequence of Theorem 2.1 is the following.
COROLLARY 2.2. IfA is a positive number such that [g’(0)[ < l/A, then the operator I AA

from D(A) into X has a unique inverse.

PROOF. Suppose xl AAxl z x2 AAx2. Ifx =fi x2, then

0 ((x AAx) (x2 AAx2), x
[xl x2[ A (Re(ax Ax2, Xl X2) -- Im(Axl Ax2,xl x2))
Ix z21 ARe<Az Ax2, z z2)

>0.#

Thus Xl X2 and I A A has a unique inverse, l-!

3. EXAMPLES.

Finding general solution methods for the nonlinear evolution equation

du(t)
dt

A u(t) for > 0 with u(0) (xo,Yo) E D(A), (3.1)

in this setting is an open area for research, but solutions do seem to exist as shown by the following two

examples.
Yosida presents an example given by Kmura [2]. This example is now modified to fit the current

circumstances. Let R R be the Euclidean plane with the usual inner product, let > 0, and for each

element (z, y) in R R, let

(max{4x t, 0}, (t + 2)2y) if x > 0,
(3.2)Tt(x, y)

(4x, (t + 2)2y) if x < 0.

Then {Tt t > 0} is a continuous family of non-linear operators from R x R into itselfwith bounding

function g given for each t > 0 by g(t) (t + 2) and 3’ 4. By definition, the infinitesimal generator

A of {Tt t > 0} is given by

(-1,4y) if x>0,
(3.3)A(x,y)= (0,4y) if x<0.

A solution to the corresponding non-linear evolution equation (3.1) can be found fairly easily if

not systematically. The form ofthe continuous family could lead one to guess the solution has the form
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(max{a- t, 0}, (t + 2)2b)
u(t)

(a, (t + 2)2b)
if a > O,

(3.4)
if a<O.

Since u(O) (xo, Yo), the solution can be pinned down to:

(t + 2)Uo)
u(t)

(max{xo- t,O},
(o, (t + )o)

if xo > O,
(3.5)

if xo < O.

As another example consider the following. Still in R x R, for _> 0 let

(Sz-t2-5t, (t+2)3y) ify>O,St(x, y)
(8x- 5t, 8y) if y _< O.

(3.6)

then {St > 0} is another continuous family with a bounding function h defined by h (t) (t + 2)3.
In this example 7 8 and the infinitesimal generator B is given by

f(-5, Sy) ify>O,
B(x, Y) (3.7)(-5, 0) ify < 0.

Again, solving the evolution equation (3.1) requires a little guesswork, but due to the characteristics

ofthe continuous family, one might try a solution ofthe form

(a- 5t, (t + 2)3b)(t)
(- 5t, 8b)

if b > 0, (3.8)
if b<0.

The initial conditions then lead to an actual solution:

(t + 2)3yO) if > O,
u(t) (xo t 5t, g Yo

(xo t 5t, Yo) if Yo -< O.
(3.9)

In both ofthese examples, knowing how the infinitesimal generator arises is a big help in solving
the equation. For this approach to be very useful, a list of conditions which lead to certain types of

continuous families should be developed. Also, there is the question ofwhether the solutions are unique.
Both ofthese topics seem worthy of further investigation.
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