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ABSTRACT. Let F be a Galois field of order g, k a fixed positive integer and R = F*** [D]
where D is an indeterminate Let L be a field extension of F of degree k We identify L ;. with F¥*! via
a fixed normal basis B of L over I The F-vector space I'x(F) ( = I'(L)) of all sequences over F**! is
a left R-module For any regular f(D) € R, Qx(f(D)) = {S € T« (F) : f(D)S = 0} is a finite F[D)-
module whose members are ultimately periodic sequences The question of invariance of a Q. (f(D))
under the Galois group G of L over F is investigated
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1. INTRODUCTION.

Let F be a Galois field of order ¢ and R = F***|D], for a fixed positive integer k The set 'y (F)
of all sequences over F**! is a left R-module such that for any S = (8n)ns0 € Tk(F) and f(D) = 3

1

a,.D' €R, a, € F** f(D)S = (s,) with &/, = 3 a,s,,, [3] For any regular f(D) € R, the set

Q(f(D)) ={S €\ (F): f(D)S =0} is a finite F[D]-module, whose members are ultimately
periodic sequences Let L be the field extension of F of degree k¥  Fix a normal basis

k-1
B={a,a%a%,...,a® '} of L over F such that 3~ % =1 Through this basis we identify Ly with
1=0

F¥*1 The Galois group G(L/F) is generated by o : L — L such that o(a) =a% a€ L The
matrix of o relative to B is the companion matrix M of X¥ —1 We get the inner automorphism
n:R — R such that A7 = M 'AM,Ac R Then Q.(f(D)) is said to be o-invariant (or invariant
under the Galois group G(L/F)) if for any S = (s,) € Q. (f(D)), S° = (c(s,)) € Q(f(D)) A brief
outline of an application of a o-invariant Q;(f(D)) to the construction of recurring planes is given at the
end of this paper Given a regular f(D) € R, if f7(D) = f(D) or f(D) is a left circulant matrix, then
Qi (f(D))iso-invariant Here we consider the converse in the sense that if Q(f(D)) is o-invariant, does
there exist a g(D) € R such that ¢"(D) = g(D) and Q(f(D)) = Q(g(D))? In this paper we give a
complete answer for the case k = 2, in Theorems (2) and (3) We also give an explicit construction of a
generating set and the dimension of an Qy(f(D)) if f7(D) = f(D), in Theorem 4 An illustration of
Theorem 4 is given in Example 15 The case, for any k > 3 remains unsolved
2. PRELIMINARIES

Let F be a Galois field of order g and I'(F) be a left F[D]-module of all sequences over F, [2]
For any f(D)#0 in F[D], Q(f(D)) ={S € '(F): f(D)S =0} is an F[D]-submodule of I'(F')
isomorphic to F[D]/F[D]f(D) For any two non-zero polynomials f(D), g(D) € F[D}, f(D) A g(D)
and f(D)V g(D) will denote their gcd and lcm respectively, 0 A f(D) is the monic factor of f(D) of
degree same as deg f(D) The following is well known (see [1] or [2])
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THEOREM 1. For any two non-zero polynomials f(D), g(D) in F[D]
() Qf(D)) +Qg(D)) =Q(f(D)V g(D))

(i) Q(f(D))NQg(D)) = Q(f(D) A g(D))

(i)  f(D)2(g(D)) = Q(g(D)/d(D)), where d(D) = f(D) A g(D)

For a fixed positive integer k, we consider R = F**¥[D] = F[D]*** Let L be the field extension
of Fof degree k and o be the F-automorphism of L givenby o(a) = a?,a € L We fix a normal basis
B = {a,at, a? } of L over F satisfying kZ]: a¥ =1 By using this we identify L with F**'  Then

10

Homy (L, L) = F** and 5 is given by the k x k-matrix

0 0 0 1
1 0 0 0
M= 0 1 0 0
0 0 1 0
the companion matrix of X* — 1 Then
0 1 0 0 0
0 0 1 0 0
M=
0 0 O 0 1
1 0 O 0 0
Forany A= [a,] € R
a2 Qa3 ... Qg Qg
asz asz ... Qagg as
Miam=|—— o . [bu]
Qg2 Qg3 .- QGkk Gk
a2 a3 ... Q1 Q11

where b,; = a,,1,4+1, 1+ 1, j+ 1 are positive integers modulo k. The following is immediate
LEMMA 1. For A = [a,)) € R, M 1AM = Aiff

a a ... Qg-j 7%

a, ay ... Q-9 Qg
A=

ay ag ak a

for some a, € F[D).

For any A € R, A" denotes M~ 'AM If f(D) € R is regular, then the bound of f(D) is
the smallest degree monic polynomial d(D) € F[D] such that Rd(D) C Rf(D); f'(D)€ R is
such that f(D)f"(D)=d(D)Ix = f*(D)f(D), [3]. Further Qx(f(D)) = f*(D)Q%(d(D)I}),
RO (f(D)) = Qu(d(D)I,) and Qi (d(D)I;) = Q(d(D))**!, [3]. For any module N, N* denotes the
direct sum of k copies of N.

3. A o-INVARIANT Qx(f(D))

We start with the following

LEMMA 2. Let f(D), g(D) € R, both be regular Then Qi(f(D)) = Q(g(D)) iff
Rf(D) = Rg(D).
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PROOF. Let d(D) = bound (f(D)), d'(D) = bound (g(D)) Let a sequence S € I'(F) be a
generator of the F'[D]-module Q(d(D)) By [3, Lemma (2 4)], the mapping

A: R/Rd(D) — Q(d(D)** = [ (d(D)I )}

such that for any [g,,(D)] € R = R/Rd(D), Mg, (D)] = [g,l )S] is a left R-isomorphism  If
Rf(D)= Rg(D), by [3, Lemma (24) (v)], u(f(D)) = Q(g(D)) Conversely, let
Q(f(D)) = U (g(D)) By[3, Theorem 2 5],

Q(d(D)}) = RQ(f(D)) = R (g9(D)) = Qu(d'(D)Ly)

Qd(D)*! = Q(d'(D))!

This gives d(D) = d'(D) As Q(d(D))*** = Qi (d(D)Ix)*, A(f(D)R) = [f*(D)Qu(d(D)I)]*
= (f(D)* and A(g"(D)R) = Qi (g(D))* As Rd(D) C f~(D)R and Rd'(D) C g"(D)R, we get
f"(D)R =g (D)R However Rf(D) ={h(D) € R: h(D)f*(D) € d(D)R} (see [3, Lemma (2 2)]
Asd(D) = d'(D), it gives Rf(D) = Rg(D)

PROPOSITION 1. For any regular f(D) € R, the following are equivalent

(i) Q(f(D)) is o-invariant

) QD) =Q(f"(D))

(i) Rf(D)= Rf"(D)

PROOF. For any S = (s,) € Tx(F), let S° = (o(s,)) = (Ms,) Obviously S € Q(f(D)) iff
S5 € U (MF(D)M™)  Thus Qi (f(D)) is o-invariant iff Q (f(D)) = Q (M f(D)M ') By Lemma
3, U(f(D) =UMF(D)M") iff Rf(D)=RMf(D)M™") iff RM"'f(D)M = Rf(D) iff
Q(f"(D)) = Q(f(D))

The above proposition shows that if Rf(D)= Rg(D) for some g¢(D)€ R satisfying
9"(D) = g(D), then Q(f(D)) is o-invariant Is the converse true? We investigate this question

LEMMA 3. Let f(D) € R be regular such that Rf(D) = Rf"(D), let f(D) = Xf"(D) The
following hold

() det(X)=1

(i) There exists g(D) € R such that ¢"(D) = g(D) and Rf(D) = Rg(D) iff for some invertible
A€ER,A"=AX

PROOF. (i) is obvious Let g(D) exist, then g(D) = Af(D) for some invertible A € R Then
9(D) = ¢"(D), gives AX f1(D) = A"f"(D) Hence A" = AX. The converse is obvious.

LEMMA 4. Let f(D) and X be as in Lemma 3 Let X* be obtained from X by applying the
cyclic permutation A = (1,2,3,..., k) to the columns of X Then some k-th root of unity, in some field
extension of F, is a characteristic value of X*.

PROOF. Let f(D) = [a,)], X = {z,)]. The equation f(D) = X f"(D), gives

k
a,; = E Loy Quil, g+l
u=1

where u + 1, j + 1 are least positive residues modulo k This is a system of k? homogeneous linear
equations in a,, By arranging a,,'s in the order

Q11, @21, ..., Qk1, A12, A22, ..., Qk2, ---

we get the coefficient matrix, the k? x k*-matrix



330 H AL-ZAID AND S SINGH

I -x* 0 0 0 0

0 I -X* 0 0 0
C:

0 0 0 0 I —-x*

-x* 0 0 0 0 I

where [ is the k x k-identity matrix As I and X* commute, C as a matrix over F[X*, 1] C F***[D],
has determinant [ — (X *)’C So for some matrix C' over F[X AT ],

CC’' = diagki[I — (XN, ., T — (XM,

By taking determinant over F[D], we get det(C) det(C’) = [det(I — (X*)*)]¥ As C is singular,
we get

det(I — (X*)*) =0.
This completes the proof

COROLLARY 1. For k=2, under the hypothesis of Lemma 4, X = [ _ab l;] with

ac+b =1

PROOF. Now X* = {“2 1

J As 1or — 1is a characteristic value of X*, and by Lemma 3,
T2 I21

T11ZT99 — T12T91 = 1, the result follows

THEOREM 2. Let F be a Galois field of characteristic p # 2 If a regular f(D) € R = F2*%[D]
is such that Qy(f(D)) is invariant under o, then Qo(f(D)) = Q2(g(D)) for some g(D) € R satisfying
9"(D) = ¢(D)

PROOF. By Proposition 1 Rf(D)= Rf"(D) Then f(D)=X f"[D), for some

b . )
x=| ¢ € R satisfying ac + % =1 In view of Lemma 3 we findan A = | *1 %2 | ¢ R
—boc a  agp

with 0 # det(A) € F suchthat A" = AX,ie
G2 G21| _ |Gn Q12 a b
aig an @ ap|| —b ¢

Casel. b=0. Then A = (1) 2] is a solution

CaseIl b# 0 By solving the system of linear equations it can be seen that

- -1 -1
A= a_lll ., b aaj; b 022] (3 1)
L™ @ — b “cage ap
with
det(A) = b7%[2a11a2 — aa?; — caly) (32

We now solve for ajq, age, suchthat A € R and det(A) =1 Then (3 2) gives

2ai1a99 — aa%l - ca§2 =b2. (33)
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In case ¢ = 0, (3 3) becomes

ay(2an —aayy) =1.

By taking a;; # 0 in F, this equation gives a»» € F[D]. Similarly if a = 0, we can solve for a;; and
ayp Leta # 0 # c By multiplying (3 3) by ¢, and by putting Y = ca.., we get

(Y —a) =b°@a}, —¢). (3 4)

This equation shows that a,,, az» should be such that a}, — ¢ = d?, for some d € F[D] Then
(an —d)(an +d)=c.
As ¢ divided 1 —b* = (1-5)(1+b), and 1 — b, 1 + b are coprime, write ¢ = c;cz, with ¢; and co
factors of 1 + b and 1 — b respectively Put
aj—d=c¢, a;+d=c.

Then

1 1
aj = E(CI +c), d= E(Cz —c1).
Then (3 4) yields

Y - a) = +bd.
To be definite, take Y — a;; = bd So that
1 1
cagpy = aj; +bd = 561(1 —-b)+ ECQ(I +b).
Now 1 — b = cod;, 1 + b = ¢1d, for some dy, dy € F[D] Consequently
1
agy = E(dl +dy).

All that remains to prove is that the other entries of A are in F[D] Now (3 3) yields
ab® = — (aayn — a,22)2 +a§2(1 —ac) = — (aay — a22)2 + ageb?.
Consequently b* divides (aay; — a22)2 This gives b !(aaj; — ay) € F[D] Similarly
b~!(ay; — cagy) € F[D]. This proves the theorem.
We now consider the case of char F' = 2

THEOREM 3. Let F be a Galois field of characteristic 2 Let f(D) € R = F2*%[D] be regular
such that f(D) = Xf7(D), for some X = [Z Ic) € R satisfying ac +b?> =1 Then there exists
g(D) € R satisfying Rf(D) = Rg(D) and g"(D) = g(D) iff one of the following holds

@M b=0

(I) b+#0, at least one of a and c is non-zero, aAc =1, a=r? and ¢ = s? for some r,

s € F[D].

PROOF. Let Rf(D) = Rg(D) with ¢g"(D) = g(D) By Lemma 3 we get an invertible A in R

such that A” = AX Letb # 0 As in the proof of Theorem 2



332 H AL-ZAID AND S SINGH

a b 'aa; +b 'au
A=| , 1 = (395
b 'a);; +b ‘caxn as
and det(A) = b *(aai, +cal,) = a( #0) € F. Thus
ad’, +cal, =08, a=p*, BeF. (36)

Asac+b> =1,aAb=bAc=1 Then(36)yieldsa Ac =1 Further (3 6) yields
[aa, + (1 +b)ag)® = b*af’.

This immediately yields @ = 7 for some r € R Similarly ¢ = s* for some s € R

Conversely if (I) holds, A = [1

0 2] is a solution Let (II) hold. ThenrAs=1 So for some

r,y€ R

re+sy==>b.

This gives aa?, + cal, = b% with aj; = z, agy = y. This solves for A.

EXAMPLE 1. Let char F = 2 Consider any by, bes € F[D] such that by + by # 0. Then

_[beeD+(D+1)bi2 b12
f(D) - (D + 1)b22 + Dby bgo

has det(f(D)) = D(bjz +by3)* #0 Thus f(D) is regular.  Further f(D)= Xf"(D) for

X = [ DI_?_ 1 b ; 1 By Theorem 3 there does not exist any g(D) € R satisfying ¢"(D) = g(D)

and Q3(f(D)) = Qa(g(D)) although Q5 (f(D)) = Q(f"(D))

We now determine the dimension and the generating set of a Qy(f(D)), if f"(D) = f(D) We
start with the following

LEMMA 5. Let f(D), g(D) and r(D) be any three non-zero members of F'[D] such that r(D)
divides g(D) Let d(D) = [¢g(D)/r(D)]A f(D). Then {S € Q(g(D)): f(D)S € Q(r(D))} =
Q(r(D)d(D))

PROOF. Let T be a generator of the F[D]-module (g(D)). Then for any s(D) € F[D],

f(D)s(D)T € Q(r(D)) iff g(D) divides f(D)s(D)r(D) iff g(D)/r(D) divides f(D)s(D) iff for
d(D) = [¢g(D)/r(D)] A f(D), g(D)/r(D)d(D) divides s(D). Consequently k = {S € Q(g(D)):
f(D)S € Q(r(D))} is generated by g(D)/r(D)d(D)T. so that K = Q(r(D)d(D)).
f(D) g¢(D)
9(D) f(D)
f(D), g(D) € FID]. We write A = f(D)? — g(D)* = det(A); clearly A #0 Further we put
d(D) = f(D)Ag(D), ds(D) = f(D)A A and dg(D) =g(D)AA. As dg(D) divides f(D) and
F(D)? - g(D)? clearly d;(D) divides d(D)®. So that (d;(D) V d4(D)) divides d(D)* Obviously d(D)
divides ds(D) A dy(D) Consequentlyd(D) = 1iff df(D) =1 =dy(D) Write f(D) = f,(D)d(D),
9(D) = g,(D)d(D). Then f,(D) A g;(D) = 1, gives f,(D) A (fy(D)? = ¢ (D)) =1 So that

We now consider a regular A € R such that A" = A. Then A = [ ] for some

d;(D) = f,(D)d(D) Ad(D)*(f,(D)* — g,(D)*)
= d(D)(f,(D) Ad(D)).
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Similarly  d,(D) = d(Di(g,(D) Ad(D)) Consequently d;(D)Ad, (D)= d(D) Further
d;(D)vd,(D) = [d;(D)d, D))/d(D) We collect these results in the following

f(D) g(D)}
g(D)  f(D)

() d\D)= f(D)AgiD)=d;(D)Ad,(D)andd;(D)V d,(D) dwides d(D)’
(1) d(D)=1iffd;(D)=1=d,(D)
(i) d;(D)vd,(D)=|d;(D)d,(D)]/d(D)

LEMMA 6. For A = [

We now prove the theorem that describes generators and the dimension of a 2,(A) with A" = A

| (D) gD)| _ f(D) 9|(D)} _ / g .
Here A= {g(D) f(D)} = d(D)L]‘(D) £(D)| = d(D)A’, d(D) = f(D) A g(D) Write
Oy =det(A") By (210), g\(D)ALy =1= fi(D)A L, Soforsome p, ', A\, N € F[D]
fi(D) = pgi(D) + AL, ()
g1(D) = W' fL(D) + X' & 38)
Let
di(D)=(u—-p)NA. 39

We shall use the above expressions and the other previously given notations in the subsequent results

LEMMA 7. Let T; be a generator of the F'[D]-module 2(d; (D)) Then for

p {f]w) gl(D>]

~la(D) fi(D)
T
Ay=| "1 |
)= T
PROOF. As det(4') = Ay, Q3(A') CQ(A1)**"  Let T be a generator of the F[D]-module
Q(H;) Let [g;] € Qy(A') Now S; = s(D)T for some s(D) € F[D] and f,;(D)S; = — g,(D)S,

and ¢,(D)S1 = — fi(D)S2 By 37) fi(D)Si = fi(D)(s(D)T) = g,(D)(us(D)T)  So that
91(D)(S2 + ps(D)T) =0 This gives Ss + us(D)T € Q(g;(D)) N QL) =0, as gy(D)AL; =1
Consequently S; = — ps(D)T  Similarly we also get So = — p's(D)T  So that s(D)(u — /)T =0
Consequently A; divides s(D)(u — ¢') As di(D) = (u— ') A Dy, we get A;/d (D) divides s(D)

Conversely if A, /d;(D) divides s(D), it is immediate that —S/.LsD( g)T] isin Q9(A") Thus Qy(A') is
the cyclic F'[D]-module generated by li ~1;1T1 ] where T} = [A1/d;(D)]T is a generator of Q(d; (D))

_|fD) ¢D)} _ H(D) a1(D)
THEOREM 4. Let A = [g(D) f(D)] —d(D)Lh(D) fl(D)] € R beregular Then

Qs (A) = F[D][ —ZZT} EBF[D]L?,] .

Where T and T are generators of the F[D]-modules Q(d; (D)d(D)) and Q(d(D)) respectively Further
dim(Q2(A)) = deg(di(D)d(D)) + degd(D)

PROOF. Now A; = A/d(D)* So by (3 9) dy(D)d(D) divides A Consequently by Lemma 5
Q(d1(D)d(D)) = {S € Q(A) : d(D)S € Q(d;(D))} Let T be a generator of the F[D]-module
Q(dy(D)d(D)), then Ty = d(D)T is a generator of 2(d,(D)) Given g; € N (A),

d(D) [g;] € (4, by 2 11), d(D)[gﬂ =s(D)[ —i:r]}’ s(D) € F[D).
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Thus d(D)S, = s(D)Ty € Q(d (D)) Consequently S| € Q(d,(D)d(D)) Furthermore we get
d(D)S, = — s(D)uT, = — pd(D)S, Sothat S, + uS, € Q(d(D)) Hence

| 3] 5] ]2

with S, € Q(d,(D)d(D)), S' € Q(d(D)) So that Q(A4) C F[D][ _T"T} + F[D) [ﬁ] It is now

immediate that
T 0
a4 - Fiol| Tplerin) L],

The last part is now obvious

EXAMPLE 2. Let F be any Galois field of characteristic 3,

f(D) ¢(D)

Az@*”hw>ﬂm

} with f(D) = 2D* + 2D, g(D)=D* +D +1.

In "the notations of Theorem 4, d(D)=(D+2),p=p'=1,A=(D+ 2)2(D2 +D +2),
Ny =D*+D+2,di(D)=(up— )AL, =D*+D+2 Sothatd,(D)d(D)=D*+D+1 The
impulse response sequence T in Q(d; (D)d(D)) is of period 8, and its initial cycle is

00102212.

Theorem 4 gives that Q5 (A) consists of all sequences of least periods, factors of 8, with first eight terms
[ c J [ b ] [ a+2c ] [2b+2cJ [ 2a+2b+c }
2c+d|’|2b+d|' |2a+c+d|'|b+c+d|' |a+b+2c+d]|’
{a?;iticd] [2aa++bzid] ' {2aa++b2id] ’ [az-:d] with a,b,¢,d € F.

We end this paper with a brief outline of an application of the o-invariant sequences to recurring
planes A recurring plane over a Galois field F is a matrix, A = [a,,] over F, indexed by the set of
natural numbers and for which there exist positive integers p, g satisfying a,; = a,,,, = @, ;44 forall ¢, j
Any such ordered pair (p, ¢) is called a period of the plane Any consecutive k rows of A constitute a
matrix A’ = la,), s <i<k+s—1,7>0. Eachcolumnof A’ being a member of F¥*1 we can regard
A', a sequence in Ty (F) Given a regular f(D) € F***[D), call a recurring plane A a row(f(D))-plane,
if every submatrix of A constituted by any k consecutive rows of A, is a member of Q(f(D)). Given an
f(D) such that Q(f(D)) is o-invariant, each s € Q(f(D)) gives a row(f(D))-plane A = [a,;] whose
i-th row equals an s-th row of S if i = s(mod k) The set of these planes can be easily seen to be closed
under component-wise addition, shifts of rows, and of columns Their detailed study will be done in
some later paper
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