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ABSTRACT. The discontinuous boundary value problem of steady state temperatures in a

quarter plane gives rise to a pair of dual integral equations which are not of Titchmarch

type. These dual integral equations are considered in this paper.
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1. INTRODUCTION.
We consider the problem of steady state temperatures in a quarter plane (see

Fig. 1), whose edge x 0 is losing heat to environment at zero temperature according to

Newton’s Law of cooling while on the edge y 0, temperature is controlled on portion of

this edge, while the heat input is known on the remaining part. Typically, this problem
is governed by:

Find u u(x,y) such that

Vu 0u + Ou 0 in x > 0, y > 0; (1.1a)

f- m= 0 on x 0 in y > 0; (1.1b)

and either

(1) u(x,0) f,(x) in 0 < x < 1 (1.2a)

and Uy(X,0) -g(x) in x > 1 (1.2b)

or

(2) uy(x,0) -f,(x) in 0 < x < 1

and u u(x,0) g,(x) in x > 1.

where the subscript denotes differentiation w.r.t, that variable.

Also, in each case we require that ul be bounded at infinity.
An appropriate representation for u u(x,y) in this case is

u(x,y) f f(t)(a sin xt + cos xt) e -ty dt in x > 0, y > 0.

(1.3a)

(1.3b)
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where f(t) is governed by the following two cases:

Casel: f f(t)(a sin xt + cos xt) dt fl(x)

and f tf(t)(a sin xt + cosxt) dt g,(x)

or

in 0<x<l

in x> 1 (1.5b)

Case 2: f tf(t)(a sinxt + cosxt) dt f,(x) in 0 < x < 1 (1.6a)

and f f(t)(a sin xt + cosxt)dt g,(x) in x > 1 (1.6b)

respectively.
We propose to solve such dual integral equations for the function f(t) in this paper.

We point out that these equations are not of Titchmarch type (because the kernel

k(x,t) a sinxt + cos xt is not a Fourier Kernel) and to our knowledge, have not been

considered before. While the kernel k(x,t) has been successfully inverted [1, page 70], dual

integral equations involving this kernel have not been considered previously. We shall

attempt oly a formal solution of these dual integral equations, and shall assume

’throughout that the functions f(x) and gL(x) are continuous in 0 <_ x <_ 1 and in x _> 1

respectively.
2. METHOD OF SOLUTION.

We shall assume that the integrals f(R)f(t)sinxt dr, f(R)tf(tlsin xt dr, f(R)tf(tlcos xt dt

and f t=f(t)cos xt dt exist, in which case,

f(R)f(t)sinxt dt F(x)=* f0 tf(t)cosxt dt F’(x) (2.1)

and f tf(t)sinxt dt G(x):=$ f0 t:f(t)csxt dt G’(x) (2.2

Equation (2.1) implies that Lira F(x) F(0) 0 and with this notation, our dual
xO

integral equations (1.5) in the first case become,
aFCx) + F’Cx) f,Cx) in 0 < x < 1 (2.3a)

and aGCx) + G’(x)= g,Cx) in x > 1 (2.3b)

with the condition that F(0) 0. (2.4)
In the second case (1.6), we write

F(x) f tf(tlsinxt dt, 0 < x < 1

and G(x)= f(R)f(t)sinxt dr, x > 1 (2.5b)

so that we again get equations (2.3) with condition (2.4).
And for both the cases, the equations (2.3) give

F(x) e-’ax fXeatf,(t)dr, 0 < x < 1, (2.6a)
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and G(x) e-ax fXeatg1(t dt,+ Be-ax in x > 1, (2.6b)

It remains to determine the constant B. We shall determine this constant by the
(physically realistic) condition that the quantity u(x,o) is continuous at x 1.

3. SOLUTION FOR THE FIRST CASE.
In this case, the dual integral equations (1.5) are reduced to dual equations

m x

f f(t)sin xt dt F(x) e-ax f e ft(t) dt in 0 < x < 1

and f tf(t)sinxt dt= e-ax fXet gt(t)dt + Be-ax in x > 1.

These equations give [2]

u J0(ut) f,(u) du + f u J0(ut) g,(u) du

dx du

x U

where

(3.1a)

(3.2)

f2(u F2 d f. xFCx) dx F= f u F’Cx) dx

2 (R) e-ax gt(t)eat dt dx. (3.3b)nd u)= f. ,/}-.
In deriving equation (3.3a), we have used the fact that F(0) 0.

To determine B, we now substitute this expression for f(t) in u(x,0) as given by
equation (1.4) above and require that

Lim u(x,0) Lim u(x,0)= aF(1)+ f’(1)= ft(1). (3.4)
x- 1 x 1

Noting that [3]

J(R) e-aX dx K0(au),
u 4 X2 -112

where K denotes the Modified Bessel Function, we have

Lim u(x,0) Lim (all(x)+ H’(x)),
x-l x-l

(3.5)

where for x > 1,

,/f(R)f(t)sinxt dt jft urn(u) ug2(u) 2B uKo(aU)
du+f du+-- f du. (3.6)

Integration by parts gives

H() [g()- () + K0()] 4- + f’ q(.) 4-. d.

At ts stage, we notice that uess the cfficient of x-1 in the expression for

H(x) is zero, H’(x) will be unbounded as x 1% and then u(x,0) cannot be continuous at

x 1. We therefore put ts coefficient to zero to obtn
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r f=(1) -g=(1)
B 2 K0(a (3.8)

This gives the value of B in terms of the quanitites f(1) and g(1) which are known

from the data. We shall now show that with this value of B, u(x,0) is continuous at

x=l. We have for x > 1,

all(x) + H (x) a f’ f’(u) V/x-u: du + a f g(u) qfx-u du

+ du + du- r aKt(a’u) q/x-u du

/x_u V/x_u
xaK (u)

71" / X --U

so that, after some simplification, we obtain

urn(u) f(u)
Lira (all(x)+ H’(x))= a f du + f du + f2(0). (3.10)
x" ’_u /_u

e F’(x)Also f2(u)
u _x

so that

r,,(0) + r’(x)x- u

Substituting the values of f(u) and f(u) in the expression for Lim (an(x)+ H’(x));
xl

interchanging the order of integration, and using the fact that
,

=, y>x>0,
x (_x)(y_u)

we obtain

Lim (all(x)+ H’(x))= a(F(1)- F(0))+ F"(0)
x-+l

+ (F’(1)- F’(0))- F"(0)+ f(0)

aF(1)+ F’(1). (3.14)
This proves the continuity of u(x,0) at x 1. It can also be seen that if B is

given by (3.8), then under suitable restrictions on the data, u(x,0) as given by equation

(3.9) is bounded as x

4. SOLUTION FOR THE SECOND CASE.
In this case, the dual equations (1.6) are reduced to

X

f tf(t)sinxt dt F(x)= e-aXf ft(t)eat dr, 0 < x < 1 (4.1a)

and ;(R)f(t)sinxt dt e-axfXeatg,(t)dt + Ce-ax, x > 1

h(x) + Ce-ax, say. (4.Xb)
The solution f(t) is now given by
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Also,

Differentiating equation (4.9) and substituting in (4.7), we get
Lim [all(x)+ H’(x)] ah(1) + h’(1)=

which shows that with C given by equation (4.6), u(x,0) is continuous at x 1.

5. THE CASE a 0.

The case of a 0 is completely different, because for bounded u, the representation

u(x,y) f(R)f(t)(a sin xt / cosxt)e-ty dt

is no more valid. The correct representation now is

u(x,y) c, + f tf(t)(cos xt)e-ty dt.

where C is a constant.

Therefore, the dual integral equations this time are:

Case i: Find C and f(t) such that

+ f tf(t)cosxt dt f(x) in 0 < x < 1CI

(1.4)

(5.1)

(5.2a)

u 4 X2 --U2

:= h(x) 2x f
(R) h,(u)

du. (4.9)
x 4 u2 X2
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and f t=f(t)cos xt dt g,(x) in x > 1.

And,
Case 2: Find C and f(t), such that

us consider dual equations (5.2) in Case 1. We shall again determine C1, by the

requirement that u(x,0) is continuous at x 1. We have from (5.2)

f(R)tf(t)cosxt dt fl(x)- Ct, 0 < x < 1

and f tf(t)sinxt dt f (x)dx g(x), say.

This gives

where

d f
(R)

For x > 1, we have u(x,0)- C i]f f(t) sinxt dt H’(x) say, where after

substituting the value of f(t) from (5,5) and simplifying, we obtain
(R)

2 Fl(0)x CtxH(x) f f(t)sinxt dt 2_
r /x’-I [G,(1)- F,(1) + Ctl + F

2 2 x

And in order for u(x,0) to be continuous at x 1, we must have

Cl 7 [Fl(1) G,(1)]. (5.8)
With ts vMue of C, it is easy to see that

Lim u(x,0) Lim H’(x) + C
xl xl

r-
2_ F,(0) + Ff2 F’r(U)

du

/I_u
Now from above,

Ft(u) f. f,(x)
dx,

/ u=_x
2 d x urttu)= fl(x) F f du

/ x2_u

(5.4a)

(5.4b)

2 2 (R)

UJo(ut du (5.5)f(t) F f UJo(ut Ft(u du + F f UJo(ut G,(u) du C f’
f t(x) dx

F,(u) f"
/ U x

and Gt(u)= f(R) g(x) dx.
u 4 x2 U2

f tzf(t)cosxt dt ft(x) in x < 1 (5.3a)

and C + f tf(t)cosxt dt gt(x) in x > 1. (5.3b)

In case 2, C is that constant, if any, for which Igt(x) Ctl 0 as x (R). Let
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F,(u)
F(0) + x J du.

/ X _U

Hence hom (5.9),
Lim u(x,0)
xl

which implies continuity of u(x,0) at x 1.

Once again, it can be seen from (5.7) that if g(x) is suitably restricted then u(x,o)

is bounded as x (R).

For Case 2, the solution is given by (4.2) in the limit as a 0’.

It should be pointed out that the problem posed by equations (5.2) has been

considered by Sneddon [4, page 99]. Sneddon considers the problem (5.2) with C =0 and

gl(x) 0. He then imposes the condition that the heat input on y 0 must remain

finite as x 1- and arrives at the conclusion that we must have F(1) 0. All this,

however, is a special case of our equation (5.8) wherein if C 0 and GI(1 0, we get

F(1) 0. It would appear therefore that this problem ought to be posed as we have

done it.

For the particular case of gl(x) 0, the problem posed by equations (5.3) has also

been considered by Sneddon [5, page 26]. For this particular case, our solution coincides

with his.

We shall now consider some special cases.

6. SOME SPECIAL CASES

We consider the dual integral equations

f(R)f(t)(= sin xt + cosxt)dt f,(x), 0 < x < 1 (6.1a)

and f tf(t)(a sin xt + cos xt) dt 0, x > 1. (6.1b)

with the (additional) requirement that the quantity f f(t) (a sinxt + cosxt) dt is

continuous at x 1.

We give results for various special cases:

1. fl(x) 1 in 0 < x < 1

In this case
f,(1)f’uJoCUt) fCu) du + K0(a f uJ0(ut K0(au du (6.2a)f(t)

2 u e-EKwhere f2(u) F f dx.

/ U x

2. fl(x) 1 + x in 0 < x < 1.

In this case

f(t) --i-- +
1 f u J0(ut) K0(au du

K0(a)
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and u(x,o) ff(t)(a sinxt / cosxt) dt is given by

u(x,O) + ax, x_<
2 x

+ x f ,(u) du
Ko(a)

,.ix du, x > 1. (6.4)ox

Ko()
For numerical calculations, it is more convenient to write

u(x,O) + x /x-K0()

+ K()’ f" [ K,() K,()] ’-’ du, _> 1. (.)

For a 0, we get u(x,0) 1, x 1 wch is correct. For a > 0, the graphs of

u(x,0)/(1 + a) for various values of a are given in Figure 2.

3. For fl(x) + 2x, we get

4 4f(t) f’uJo(ut) du + Ko(a) f uJo(ut) go() du (.)

d so on. It is easy to obtain f(t) for fl(x) P + pxp’l, p 1, and then by

superposition, for any anytic function fl(x).
As a finM example, we take a 0 and take fl(x) xp, p > 0, and gl(x) 0 in

(5.2). The resulting problem is: Find Cl and f(t) such that

Cl + f tf(t)cosxt dt xp in 0 < x < 1 (6.?a)

=d f()cosdt=0 i= >l. (O.b)

We find

1 r[(p + 1)/=]
c, (o.s)

r[(, + )/]

=d (t) c,f’ u,. J0(ut) du- c,f’o(u)du (.)

and then

u(x,0) C + f .tf(t)cosxt dt xp in 0 < x < 1

Clf Pup’Ix

]/X U

For p 0, we get f(t) 0, C 1, which is correct.

Some other interesting cases are:

p 1 = u(x,0) x

_-2-z. x sin-I Ix1--]
p 2 := u(x,0) x

du in x > 1. (6.10)

in O<x<l

in x_> i,

in O_<x_<l
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x xv/x-1 in x

_
1,

p 3 == u(x,0) x in 0

_
x

_
1

2-[xSsin’t[-]z" -xq/x’-I in x_ I,

and so on.

The graphs of u(x,0) for several values of p are given in Fig. 3.

on x= 0

Y

V2u 0

[u[ < M at infinity

u fl(x)
and _2u -gi(x)y

and u gl (x)

x

F I G. 1- The Problem
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FIG, 2

Values of y u(x,0)/(l + ), equation (6.5), for several values of ,

i
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FIG. 3

Values of u(x,0), equation (6.10), for several values of p.
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