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ABSTRACT. This paper deals with the extreme points of closed convex hulls of the classes of
multivalent functions related to Ruscheweyh derivatives and then these are used to determine the
coefficient bounds Finally, we investigate convolution conditions and other properties of the functions in
these classes
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1. INTRODUCTION
An analytic s-function is said to be p-valent if it assumes each value not more than p-times and some
value exactly p-times Let M(p), p > 1 integer, denote the family of all functions of the form

00
f@) =22+ a2 an
k=p+1
which are analytic and p-valent in the unit disk A ={z:|2|] <1} Let S;(a) denote the class of
functions of the form (1 1) which satisfy the conditions

Re (2!’:;())> > pa, and /QW (z}z(‘;)) dé = 27p (1 2ab)

for0<a<1landz€ A A function in S;(«) is called a p-valent starlike of order a in A The class
S;(a'), where o' = ap, 0 < & < p, was introduced by Goluzina [1] A function f of the form (1 1) is
said to be in Cp(a) if 2f'(2)/pisin S;(a) A function in Cp(a) is called a p-valent convex of order « in
A We observe that S;(a) C'S;(0) = S}, Cp(a) C Cp(0) = C, Goodman [2] introduced the classes
S, and C, In the same paper, he observed that these are subclasses of M(p) Besides, note that
Si(a) = S*(a) and Cy(a) = C(a), where S*(a) and C(a) consist of the functions which are,
respectively, starlike of order a and convex of order « in A, see, for example [3] Also, we notice that
there are different ways of extending starlike and convex concepts to p-valent functions and Hummel [4]
has made an extensive study of the various possxbllmes

If f(2) = 2P + Z a,2* and g(z) = 2P + Z bi2* are two power series in A, then its Hadamard

k=
product is defined as (f*g (2) =27 + Z akbkz m A For f € M(p), we write
k=p+1
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P

nop | ) — i ~ _

D flz)= A=y Sxf(z), nz2 —p+1 (13)

The operator D" "7 ! f is called the (n + p — 1)th order Ruscheweyh derivativeof f Let R, (p,a)
denote the subclasses of functions f in M (p) which satisfy the conditions

2D P () N R (C) A Y
Re( D7 f(z) > pa and Jo R ‘W dé = 27p (1 4ab)
for0 < a < 1landz€ /A The condition (1 4b) implies that D™*? "' f(z) has p roots in A We observe
that R , (p,@) = S;(a), Ry(1,a) = S*(a), and R|(1,a) = C(a) Theclass R,(1,a) = R,(a) was
introduced and studied by the author [5] Moreover, R,,(p,a) C R,(p,0) C K,(p) for n > p, where

Kn(p):{feM(p): Lpf(——>1/2,z€ll}
Dnip 1 f( )

are subclasses of M(p) studied by Goel and Sohi [6] Note that K,(1) was introduced by Ruscheweyh [7]

The fundamental viewpoint of considering convex hulls and extreme points of S*(«) and C(a) were
first given in [8] and [9] The author and Silverman [10] have studied the extreme points of the closed
convex hull of R,(a) Earlier, some of the concepts of convex hulls and extreme points were extended to
*multivalent functions in [11-13], and others

In the present paper, we determine the extreme points of the closed convex hulls of R,(p, ) and
K,(p) These are then used to determine the coefficient bounds Finally, we investigate convolution
conditions and other properties of the functions in R,,(p, &)

In the sequel, we denote the closed convex hull of a family F' by co ' Also, let E(co F') denote the
set of all extreme points of F'

2. EXTREME POINTS
LEMMA 2.1. [12] E(co S; (a)) consists of the functions given by

oo _ k-
ey BT @
(1 — z2)21eP el (k—p)!

lz) =1, z € A, where (a), =a(a+1)(a+2)...(a+k—-1)
THEOREM 2.1. The extreme points of co R,,(p, @), 0 < a < 1, are given by the functions

(2p—2ap), ,(n+p-1)!
z)_z”+Z k+np—l)! k=pak ozl =1, z€A. 22)

k=p+1

PROOF. We first notice that the operator D"*P~!: f — D"*P~1f is an isomorphism from
Rn(p, @) to S;(«) and consequently it preserves extreme points Also, we observe that

Dn+P—1f(z) (1_ )n+p f(z —zp-{-k;l(:':];:})akzk, (23)

Therefore, from Lemma 2 1 we find that the extreme points of R, (p, &) are given by

Zp—’-i (n+k—1> l(2p 2ap)k pl‘k Py k
WS n+p-1 (k —p)!

This simplifies to (2 2) and the proof is complete
REMARK 2.1. The special case of p=1 in Theorem 2 1 yields the extreme points of co R,(a)
found in [10]
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REMARK 2.2. Lettingn = — p+1 and a = 0 in Theorem 2 1, we obtain the extreme points of
co S, found by Hallenbeck and Livingston [11]
COROLLARY 2.1. If f(z) = » + 3 ;= isin R, (p, ), then
Aopod
(2p—2ap); ,(n+p-1)!

<
lax| < Getn_1n :

k>p+1 (24)

with equality for

> (2p—2ap), ,(n+p—1)
Z)= Zp P * plk = z .
f.(2) +k Ep’l Ftn_1) , lxl =1, [SAN

COROLLARY 2.2. If f(:) = 2 + 3 ags* isin S;, then

k=p+1

lax < 2p)2p+1)...(p+k—-1)

< , k>2p+1.
(k= p)! P
The above result of Goodman [2] may be found by letting @ = 0, n = — p + 1 in Corollary 2 1
- p
COROLLARY 23. If f(2) = 2 + 3. ax2* isin R,(p, @), then
k=p+1
2\ (2P — 2ap);_,(n+p—1)!
< P P k
HOES, +k§| Frns) ,

with equality for f,(2)at 2 = T r.

In [10], the author and Silverman found the extreme points of the closed convex hull of K,(p), when
p =1 In the next theorem, we find the corresponding result when p > 1

LEMMA 2.2. [6] K, (p) C K,_1(p) foreveryn > —p+1

THEOREM 2.2. The extreme points of coK,,(p) are

2P =
=2p+z ¥ Pk x| =1,2€e ) forall n> —p+1.
1-zz k=p+1

PROOF. For g(z) = 27 /(1 — z2), we observe that

2P 2P 2P

Dn+p—1 — - .
9(2) (1 —z2)™? 1-z2 (1 —z2)™?
Therefore,
2 [C)) 1
Re D igz) Re 122 >1/2.

It implies that g € K,,(p) foreveryn > — p+1 We thus have

{ 2 z| = 1,zeA} C K. (p).

1—-z2'

But by Lemma 2 2, K,,(p) C K_,1(p) Since

1
Kopaw) = {s e My iR 2L > 7

_ {feM(z:):Reﬁ:(f——l)j‘ > 1/2} =S’:(Z%;_l)'

we have
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b4 [(2p—1
{1—1: |x|_.1,~eA}cS,,( 3 >

On the other hand, the extreme points of co S;("’_ﬁ—/,') are {I_: zl=1,z € A}, from Lemma 2 1,

and the result follows
COROLLARY 2.4 Iff(z)=:"+ Y ay2* € K, (p). then|ay| < 1fork >p+1

kpet
3. INCLUSION RELATIONS

LEMMA 3.1. [14] Let w be a non-constant and analytic functionin |z| <7 < 1, w(0) =0 If ||
attains its maximum value on the circle |z| = r at 2o, then 2pw'(2) = kw(zq), where k( > 1) 1s any real
number

THEOREM 3.1. R, . |(p,a) C R,(p,a)forala(0 < a<1l),andn > —p+1

PROOF. Let f€R,.,(p,a) Define an analytic function w(z) in A such that w(0) =0,
w(z)# —1forallz € Aby

“(DnP ()Y _ -
ol e o
Using the identity
| (D71 f(2)) = (4 p)DVPf(z) = nD P f(2), G2
we can rewrite (3 1) as
DVPf(z) _ ntp+((2a—Dp+n(z) 03
Driv-1f(z) (n +p)(1 +w(2))
Taking logarithmic differentiation of (3 3), we get
2D f(2)) <1 +(2a - 1>w<z>> B 2p(1 — @) (2) C ea
Drerf(2) 1+w(2) (1 +w(2)(n+p+(n+ (2a - 1)p)w(2))

We claim that |w(z)| < 1 for all z € A For otherwise, by Lemma 3 1, there exists a point 2y € A such
that zpw'(2) = kw(2g) with |w(2)| = 1and k > 1 Applying this result to (3 4), we obtain

WECaciCIA P SR

- < for each > — 1.
D7 (z0) 2(n+ap) = 7° ne TR

This proves that f ¢ R,.;(p, @), which contradicts the hypothesis We thus conclude that |w(2)| < 1 for

all z € A and hence f € R,(p, ) This completes the proof
In view of Theorem 3 1, it immediately follows that R.(p,a) C S;(a) foralln > —p+1 Fore

fixed and n = n(«) sufficiently large, we shall now show that R,(p,0) C Cp(a) We need the following
LEMMA 3.2, Let f(z) =22+ Y ay2* € M(p), andlet 0 < o < 1 The function f is in C,(a)
1

k=p+

00

> k(k—ap)lax| < (1 - ). 35S
k=p+1

PROOF. It suffices to show that

2f"(2)
f'(2)

‘1+ —plsp(l—a) (36)

We have
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|2f"(z) = (p = D (=) = p(A = Q)| f'(2)]

' —p(l—a)(p—ﬁj k|ak|>

> k(k - pla
A p 1

kopt

<> k(k—pla -1 —a) +p(1 - )Y kla|

A op 1 A p-i

=Y k(k - ap)las] - p*(1 - @) <0,

k p-l

<

which proves (3 6) This completes the proof
THEOREM 3.2. Forfixeda, 0 < a < 1, p > 1 integer

2(p+ 1)

> =
R,(p,0) C Cp(a) forany n >ng (1= a)

PROOF. Let f(z) = 2P + 3 ax2* bein R,(p,0) We observe that
k=p+1

f € Ru(p,0) &= D"**"'f € S, 37

In view of (2 3), and as a consequence of Corollary 2 2 of Theorem 2 1, we obtain

n+k—1 (2P)k—p
n+p—1)%=—pt’
which yields
Py (n+k—1\"
> .
loxl < 5= p),(n+p_1) forall k>p+1 (39)

Therefore, because of Lemma 3 2, we only need to prove that

(2p)y n+k—1\"
kZJrlk2|ak]<kZ+1k2 e p;’! (n+p_1) <p(1-a) forall n>ng.
P P

Since Y. (1/k?) < 1, it suffices to establish that

k=p+1
<. k*(2p),, (n+k—1)“ °°
——F <pP(1-a)) ) (1/F) G9)
W51 (k=p)! \nt+p-1 k=zp+l
for alln > ny We notice that (3 9) holds if
k'2p), (n+k—1)"

dy = ———=2 < p*(1- 3

T (k-p)! (n+p—1> <p(l-a (310

foralln >ng, k >p+1 But

<n+k-1)‘1_ (n+p—1)(k—p)!
n+p-1 - (n+k—1)

is a decreasing function of n( > — p+ 1) Therefore, we need only prove (3 10) for n = ng Since for
n = no,

4
d, _ e H ) e

1-a)
ng +p
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15 true for all p > 1, 1t follows that (3 10) holds for k£ = p+1 Thus the proof of the theorem will be
completed by proving that d; 1s a decreasing function of k( > p + 1) for n = ng, that s, If

d (k+1)'(k+p)
dk - k'(kﬂ“l’l()) -7

which 1s equivalent to
glky=k'(ny —4—p) — k*(6 +4p) — k*(44+6p) — k(1 +4p) — p > 0
Since

2(p+1)' — p(4 +p)

n0_4_p2 p )

we have
2(p+1)" 1 ,
g(k) > (% - 15— 16:0)164 = [@((JH 1)~ 8p) +1|k' >0

forallp > 1 The proof is complete
4. CONVOLUTION CONDITIONS
LEMMA 4.1. Let fe M(p) Then f€S;(a),0<a<1,p>1, if and only if f(z)«
[(=»+Bz*'")/(1-2)*] #0(0 < |z| < 1,|z| = 1), where
_ a:+1—2p(1—a)‘ @
2p(1 — a)

PROOF. Since zf'(z)/f(z) at z = 0 is p, therefore

2f'(2) o
P
Re | L] >0,
p—ap
2f'(2)

7)) TP -1
i) ;éx , Jzl=1, =z# —1.
p—ap z+1

which is equivalent to

This simplifies to

(2f'(2) — apf(2))(z +1) = (p— ap)(z — 1)f(2) #0 (42)
in the annulus p < |z| < 1 for some p(0 < p < 1) For f(z) = 2P+ f: a2*, it is easy to show that
k=p+1
HOR 243 (k- pt Dot = 2(2) - (p— DS(2), 43)
( ) k=p+1
and
f)s T = £2). “9

Therefore, (4 2) is equivalent to

s+ [{ o + - 07

that is

2P

2P
Tz}($+1)—(P—aP)(I*1)1 #0

-z
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2p(l —a)z’ +(x+1-2p(l —a))z" !
f(:.*<p( a \(rl_& p(1 - a)) )3&0

This proves (4 1)

THEOREM 4.1. The function fisin R, (p.a if and only if

P + (n_ pit n pRa 1) o
f(" * ~ (1 a) ~ 7£ 0 45
<) (1 _ :)u p-1 7 ( )

for0 < |z| <1, |z| = 1.

PROOF. Since f € R,(p,a)ifand only if D"? ' f € S;(a), an application of (1 3) to Lemma 4 1
yields

zP Bzr!
f(:)*<h(~)*<(1_:)__,+(1_:)_,>) #0, (46)

where h{z) = z/(1 — z)""7 Butin view of (4 3) and (4 4), we may write

g B:p ! zP ZPrl
h(:)*( 5 + ) = h(z)* ———= + Bh(z)* 5

1-z7 @1-z (1-2z)? (1-2)
=zh'(z) — (p— 1)h(z) + B(zh'(z

) =
= (B+1)zh'(z) — (p— 1+ Bp)h(z)

#8415 Y ) - (p-1+Bp);

P4+ (=14 (B+1)(n+p))P!
(1_Z)n+p+1 .

ph(z)

Substituting the value of B from (4 1), simplifying, the result then follows from (4 6)

5. CONCLUDING COMMENTS

It would be possible to obtain additional information and solutions to extremal problems for the

family R,(p, a) if one gets f,(z) in (2 2) into closed form For example, using the closed form, viz

2?/(1 — zz), forn = — p+1 and a = 0, Hallenbeck and Livingston [11] found coefficient estimates
for functions majorized by or subordinate to functions in S; Note that the closed form of (2 2) even for

the special case of p = 1 is an open problem (see, [10])
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