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ABSTRACT. This paper deals with the extreme points of closed convex hulls of the classes of

multivalent functions related to Ruscheweyh derivatives and then these are used to determine the

coefficient bounds Finally, we investigate convolution conditions and other properties of the functions in

these classes
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1. INTRODUCTION

An analytic s-function is said to be p-valent if it assumes each value not more than p-times and some

value exactly p-times Let M(p), p _> I integer, denote the family of all functions of the form

f(z) zv + akz
k (1 1)

k=p+l

which are analytic and p-valent in the unit disk /k {z.lz < 1}
functions of the form (1 1) which satisfy the conditions

()Re zf’(z)
> pa, and Re dO 2rp (1 2ab)

f(z) f(z)

for 0 <_ a < 1 and z E/ A function in S,(a) is called a p-valent starhke of order a in/ The class

S (a’), where a’ ap, 0 _< a’ < p, was introduced by Goluzina [1] A function f of the form (1 1) is

said to be in Cp(a) if zft(z)/p is in S(a) A function in C;,(a) is called ap-valent convex of order a in

/ We observe that S(a) c’S(O) S, Cp(a) c Cp(O) Cp Goodman [2] introduced the classes

S and Cp In the same paper, he observed that these are subclasses of M(p) Besides, note that

S’(a) S*(a) and Cl(a)=C(a), where S*(a) and C(a) consist of the functions which are,

respectively, starlike of order a and convex of order a in , see, for example [3] Also, we notice that

there are different ways of extending starlike and convex concepts to p-valent functions and Hummel [4]
has made an extensive study of the various possibilities

If f(z) zP + az and 9(z) zp + bkz are two power series in /k, then its Hadamard
k=p+l k= +1

product is defined as (f,g)(z) zp + abkz in For f E M(p), we write
k=p+l

Let S(a) denote the class of
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~P

D" " f(-) .f(-), n_> -p+l
(1--)" P

(1 3)

The operator D" ’’ if is called the (n + p- 1)th order Ruscheweyh dertvattve of f
denote the subclasses of functions f in M(p) which satisfiy the conditions

Re
D ; f-- > pa and Re D,; ii dO 2rcp

Let R, (p, a)

(l 4ab)

for 0 _< a < and z E/x, The condition (1 4b) implies that D*P-lf(z) has p roots in 2x We observe
that R p (p, a) S; (a), R0 (1, a) S" (a), and R (1, a) C(a) The class R. (1, a) R,, (a) was

introduced and studied by the author [5] Moreover, R,(p, a) C R,(p, O) C K,(p) for n _> p, where

K,(p)- {fEM(p)’Re D’;Pf(z)
D,_p_lf(z)

> 1/2,

are subclasses of M(p) studied by God and Sohi [6] Note that K,(1) was introduced by Ruscheweyh [7]
The fundamental viewpoint of considering convex hulls and extreme points of S" (a) and C(a) were

first given in [8] and [9] The author and Silverman [10] have studied the extreme points of the closed

convex hull of R. (a) Earlier, some of the concepts of convex hulls and extreme points were extended to

multivalent functions in 11-13 ], and others

In the present paper, we determine the extreme points of the closed convex hulls of R,(p, ) and

K,(p) These are then used to determine the coefficient bounds Finally, we investigate convolution

conditions and other properties of the functions in R (p, a)
In the sequel, we denote the closed convex hull of a family F by co F Also, let E(co F) denote the

set of all extreme points of F

2. EXTREME POINTS
LEMMA 2.1. [12] E (co S’ (a)) consists of the functions given by

zp
z (2 1)

(1 z)2(1-)p
Zp 21-

(219

k=p+l (k p)!

1, z E /’x, where (a)k a(a + 1)(a + 2)...(a + k 1)
THEOREM 2.1. The extreme points of co R, (p, a), 0 < 1, are given by the nctions

f(z) zp +
(2p- 2aP)k_p(n + p- 1)

k:p+l Tn-- 1)[
xk-pzk, I1- 1, z e . (22)

PROOF. We first notice that the operator Dn+p-l"f- D’+P-lf is an isomorphism from

R(p, a) to S (a) and consequently it preserves extreme points Also, we observe that

* f(z) zp +
n + k-1

akz
kDn+p-1 f() ( 3)__z_

.(l-z)’+p n + p-1=p+

Therefore, from Lemma 2 we find that the extreme points ofP (p, a) are given by

zp+ (n+k--l)-l(2p--2aP)k-Pxk-Pzk.
k=p/l

TL + p- 1 (k p)!

This simplifies to (2 2) and the proof is complete

REMARK 2.1. The special case of p 1 in Theorem 2 yields the extreme points of co R,(a)
found in 10]
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REMARK 2.2. Letting rz p + and a 0 n Theorem 2 1, we obtain the extreme points of
co S found by Hallenbeck and Lwingston !]

COROLLARY 2.1. lff(z) z’ + a z is in R,,(p,a), then
p

(2p- 2ap) i,(n + p- 1)!
lah <_ k _> p + (2 4)(k + n- )I

with equality for

f (z) zr’ +
(2p- 2ap), _,(n + p- 1)!

p, (k+n-1)
z Pzk, Izl =1, ~C A.

COROLLARY 2.2. If f(,z) z; + ’ ak z is in S, then
=p-r

I1 < (2p)(2p + 1)...(p + k- 1)
k > p+ 1(_ p)!

The above result ofGoodman [2] may be found by letting a 0, n p + 1 in Corollary 2

COROLLARY 2.3. lff(z) zP + }2 ak zk is in R,(p, c), then
k=p+l

If(z)l r +
(2p 2aP)kce(n + p 1)

with equality for f (z) at z r.

In 10], the author and Silverm found the extreme points of the closed convex hull of K.(p), when
p 1 In the next theorem, we find the coesponding result when p 1

LEMMA 2.2. [6] K,, (p) C K-I(p) for eve n p + 1

THEOREM 2.2. The extreme points ofcoK (p) are

--zp+ z-pz’lz]=l z for all n> -p+l.
1 zz

k=p+

PROOF. For g(z) zp/(1 xz), we observe that

Zp Zp ZpD’+P-g(z) ,
(1 xz)’’+p 1 zz (1 xz)’’+p"

Therefore,

D"+’g(z) 1
> 1/2.Re

D,,+,_g(z
Re

1 xz

It implies that g c K, (p) for every n > p + 1 We thus have

zp

1-xz 11 1,z A} C K,.,(p).

But by Lemma 2 2, K, (p) C K_p+(p) Since

Dlf 1 }K_p+(p) f e M(p) Re- >

f M(p)" Re zf (p- 1)f
f

> 1/2} =S(2p-1

2/9 )’
we have
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zl-1 zE/ cS
2p-1

1 xz 2p

On the other hand, the extreme po,nts of co S;( -’’ 1) are { : x I- :E 2x}, from Lemma21

and the result follows

COROLLARY 2.4 lff(z) z’ + a - K,,(p), then I1 _< for _> p/
p,I

3. INCLUSION RELATIONS
LEMMA 3.1. [14] Let z be a non-constant and analytic function in Izl < r < 1, w(0) 0 lftwl

attains its maximum value on the circle z r at 0, then zo’(zo) k(zo), where k( _> 1) s any real

number

TttEOREM 3.1. R,.(p,c) c R(p,c) for all c(0 < c < 1), andn _> -p+
PROOF. Let f R,, (p, c Define an analytic function (z) in such that (0)- 0,

w(z) :/: for all z / by

D’-’p-f(z) p l+(z) )" ( 1)

Using the identity

z(D -P- f(z))t (?2 + R)Dn- Pf(z) -nD’ P-lf(2), (3 2)

we can rewrite (31) as

D’+Pf(z) n + p + ((2c 1)p + n)w(z)
D4-r’-l f(z) (n + p)(1 + w(z))

(33)

Taking logarithmic differentiation of (3 3), we get

z(D’+pf(z))
Dn+pf(z)

1 + (2c 1)w(z)) 2p(1 c)zw’(z)
=P 1 +w(z) -(l+w(z))(n+p+(n+(2c-l)p)w(z)) (34)

We claim that w(z)[ < 1 for all z E/’, For otherwise, by Lemma 3 1, there exists a point z0 E/h such

that zow’(z) k(zo) with I(z0)l I and k > 1 Applying this result to (3 4), we obtain

Re(Z(Dr+Pf(z))t) < pc
kp(1 c) <pa for each n_> -p+l.

This proves that f Rn+l(p, c), which contradicts the hypothesis We thus conclude that Iw(z)[ < 1 for

all z A and hence f/(p, c) This completes the proof
In view of Theorem 3 1, it immediately follows that P(p,a) C S;(a) for all ?2 > p+ 1 For a

fixed and ?2 72(c) sufficiently large, we shall now show that/(p, 0) C Up(a) We need the following

LEMMA 3.2. Let f(z) zr’ / akz
k M(p), and let 0 _< a < 1 The function f is in Up(a)

k=p+l

if _
k(k p)lal Pg(1 a). (3 5)

=p+

PROOF. It suffices to show that

zf"(z)
f’(z) P < p(1- c). (3 6)

We have
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[-f"(z) (p- 1)f’(z)l- p(1 a)lf’(=)l

< k(k-p)lal-p2(1-a)+p(1-a,)E k]atl
p p.I

k(k ap)laLl- p2(1 a) <_ O,
kp.l

which proves (3 6) This completes the proof
THEOREM 3.2. For fixed a, 0 < a < 1, p > integer

2(p+ 1)"
R,,(p,O) cCp(a) for any n_>no

p(1 -a)

PROOF. Let f(z) zV + akz be in R(p, 0) We observe that
k=p4-1

f E R,(p,O) .= D’+-f S.
In view of (2 3), and as a consequence of Corollary 2 2 of Theorem 2 1, we obtain

n+p-1 ak
(2P)k-p
(k-p)!’

which yields

(2P)k-, ( n + k --1)
-1

lal <- (k-p)! n + p-1 forall k >_ p + l.

Therefore, because ofLemma 3 2, we only need to prove that

?11 < = (2p)_ , / 1 -’
<p2(1-a) forMl n>no.

--+ k=p+ (k p) n + p-1

Since ’ (1/k2) < 1, it suffices to establish that
k=p+l

k2(2P)k_p (n_t_k_l)
-1

E (k-p)! n+p-1 _<p(1-a)E (1/k)
k=p+l k=p+l

(3 7)

(3 8)

(3 9)

for all n > no We notice that (3 9) holds if

k4(2P)k-p (n-+- k l )
-1

d- (k-p)! n+p-1 -< p2(1-a)

for alln_>n0, k>p+l But

n + k 1’-1 (n +p- 1)! (k p)!
n +p- 1 (n+k- 1)!

(3

is a decreasing function of n( > p + 1) Therefore, we need only prove (3 10) for n no Since for

n z0,

2p(p + 1)4 p2dp+l < (1 a)
no +p
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as true for all p _>_ 1, at follows that (3 10) holds for k p + Thus the proof of the theorem wall be

completed by prowng that dr. as a decreasing function of k( >_ p + 1) for n n0, that s, tf

d (+l)(k+p)
d k (k + no

_<1,

whach as equivalent to

9(k) k(n(, 4 p) k3(6 + 4p) k-’(4 + 6p) k(1 + 4p) p >_ 0

Since

no-4-p>_
2(p + 1)" p(4 + p)

we have

-15-16p)k 2(p+p 1)((p+1)3-8p)+1]k >0

for all p >_ 1 The proof is complete

4. CONVOLUTION CONDITIONS
LEMMA 4.1. Let fEM(p) Then fES,(a),0_<a< 1, p_> 1, if and only if f(z),

[(zp + Bz"’)/(1- z)2] # 0(0 < Izl < 1,11 1), where

x+l 2p(1 a)B= (4 )2p(1 -a)

PROOF. Since zf’(z)/f(z) at z 0 is p, therefore

Re
ap

p-7 >o,

which is equivalent to

zf’(z)
f(z) ap X- 1

p-ap x+l’
-1.

This simplifies to

(zf’(z)- apy(z))(x + 1)- (p-ap)(x- 1)f(z) # 0 (4 2)

in the annulus p < Izl < I for some p(O < p < 1) For f(z) zP+ akZk, it is easy to show that
k=p+

zp
f(z) (1 z)

zp + E (k p + 1)ak zk zf’(z) (p- 1)f(z), (4 3)
k=p+l

and

Zp

f(z) , f(z). (4 4)
1-z

Therefore, (4 2) is equivalent to

f(z), { } zpzP zP zP
(x + 1) (p- ap)(x 1)

1(1 z)
+ (p- 1) 1_-- apl z

#0

that is
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f(.), (2p(1--a}ct’+(X(,l_+l--.}_2p(1--a))z t’ ) --0

Fhls proves (4 1)
THEOREM 4.1. The function f is in _g,,l,p, ol fand only if

z + (1 p)* pt2n I) .,.p ") (4 5)

for0< z < 1, x -1.

PROOF. Since f R,(p,c) if and only lfD"’P f S(o), an application of(l 3) to Lemma 4

yields

f(z), h(z),
(1 z)

+ (7 0, (46)

where h(z) z’/(1 z)’’p But in view of(4 3) and (4 4), we may write

zp
h(-), +

(1 -)-

Bzp \ zp zp

-,) h(:),
)2 + Bh(z),

(1 -1- (1 (1 -)-
zh’(z)- (p- 1)h(z)+ B(zh’(z)- ph(z))
(B + 1)zh’(z)- (p- + Bp)h(z)

(p- (+p)--’)(u + 1)
( ), + i -- i;-v> (p +

zp + 1 + (B + 1)(n + p))z

(1- z)

(1 z5" ’p

Substituting the value ofB from (4 1), simplifying, the result then follows from (4 6)

5. CONCLUDING COMMENTS
It would be possible to obtain additional information and solutions to extremal problems for the

family R,(p,c) ff one gets f.(z) in (2 2) into closed form For example, using the closed form, viz

z’/(1 xz)-%’, for n p + 1 and a 0. Hallenbeck and Livingston 11 found coefficient estimates
for functions majorized by or subordinate to functions in S, Note that the closed form of (2 2) even for

the special case of p 1 is an open problem (see, 10])
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