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ABSTRACT. The problem of oblique cylindrical linearized wave motion is considered for a fluid

of infinite depth or finite constant depth in the presence of an impermeable cylindrical wall and coaxial

porous wall immersed vertically in the fluid The motion is generated once by the oscillations, which are

periodic in time and in 0-direction, of the impermeable wall and next by the porous wall. The velocity

.potentials have been found in closed forms in the different regions of the fluid and then calculating the

hydrodynamic pressure distribution on the porous wall and the profile of the free surface. The scattering

problem of oblique waves is then considered A wave trapping phenomenon is investigated. Numerical

results are given to the case of radial incident waves and the case when the angle of incident waves is 30

to the radial direction.
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1. INTRODUCTION.
The scattering of surface waves obliquely incident on partially immersed or completely submerged

vertical barriers and plates in infinite fluid were investigated by Faulkner [1,2], Jarvis and Taylor [3],
Evans and Morris [4], Rhodes-Robinson [5] and Mandal and Goswami [6]. Levine [7] considered the

scattering of surface waves obliquely incident on a submerged circular cylinder. The problem of

scattering of oblique waves by a shallow draft cylinder at the free surface was solved by Garrison [8].
Subsequently, Bai [9] studied the more general problem of scattering of oblique waves by a partially

immersed cylinder. In all of such works the immersed bodies are assumed to be impermeable. Chwang

10] considered a porous wavemaker oscillating normally to its plane with a constant amplitude. In his

linearized analysis, the wavemaker is located in the middle of an infinitely long channel with constant

depth. Chwang and Li [11] applied the linearized porous wavemaker method developed in [10] to

investigate the small amplitude surface waves produced by a piston-type porous wavemaker near the end

of a semi-infinitely long channel of constant depth. Chwang and Dong [12] studied the problem of

reflection and transmission of small amplitude surface waves by a vertical porous plate fixed near the end

of a semi-infinitely long open channel of constant depth. Gorgui and Faltas [13] extended Chwang’s

work to include the study of wave motion for a fluid of infinite horizontal extend and of infinite or finite

constant depth in the presence of an impermeable plate and a porous wall immersed in the fluid parallel to

each other. The waves are generated by arbitrary prescribed horizontal oscillations performed by the

impermeable plate or the porous wall.
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In the present paper we investigate the case of oblique cylindrical wave motion in fluids of infinite

depth or finite constant depth The linearized theory for waves of small amplitude is used to analyze the

forced motion in fluids bounded internally by an impermeable vertical circular cylinder surrounded by a

coaxial cylindrical porous wall The waves are generated by arbitrary prescribed oscillations, which are

periodic in time and in 0-direction, first performed by the impermeable wall and later by the porous wall

It is assumed that the pores of the wall are of such nature as to allow the application of Darcy’s law that

the fluid velocity normal to the wall is linearly proportional to the difference in pressure between its two

sides The method of separation of variables is applied to find analytic solution in closed forms for the

linearized boundary value problem in the different regions of the fluid The results of Sections 3 and 4

are used to find the reflection coefficient of the reflected waves due to the scattering of time and 0

periodic waves incident with angle/ to the radial direction In the last section numerical results are

presented for the two cases of radial oscillations and the case of 30

2. BOUNDARY VALUE PROBLEM
We consider here the excitation of gravity waves on the surface of a fluid by an impermeable

vertical cylindrical wall of circular cross-section of radius a that performs oscillations which are periodic
in time and in 0-direction. A coaxial cylindrical porous wall of circular cross-section of radius b( > a) is

fix.ed in the fluid (see Fig. 1). Let (r, 0, y) be cylindrical coordinates with the origin 0 in the undisturbed
free surface such that 0y pointing down into the fluid coinciding with the axis of the impermeable and

porous walls.

2

Impermeable
wall

Porous wall

Fig. 1: Schematic diagram of a horizontal cross-section ofthe physical problem.

Let the velocity of the impermeable wall at time is U()exp(- icat + ivO), where v sin, / is the

angle that the produced train of waves makes with the radial direction and U(/) is a complex valued and

suitably limited. The resulting motion is therefore time and 0 harmonics with the same w and v as of the

impermeable wall.
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We assume that the fluid is incompressible and inviscid and that the motion originates from rest, by
virtue of which there exist velocity potentials Cj(r, O, y; t) such that

ej(r, 0, y; t) Re[;(r, y)exp( iw-t + zv0)]

where the subscripts 3 1, 2 refer to the regions a < r < b and r > b respectively Also the motion is

assumed small so that the linearization is permissible. We consider here first the case when the fluid is of
infinite depth The functions es(r, y) satisfy

0 1 0 0 v

Or-j + -t
r2

The linearized free surface condition is

0
K3 + y 3 =0

where K and g is the gravitational constant.
g

On the impermeable wall

and on the porous wall

y>O, (21)

on y=0, (22)

0 0

a1 rr2’ on r=b. (2 4)

We shall also assume that the porous wall is made of material with very fine pores. Thus according to

Taylor’s assumption 14] we have

0 d

Or 3 (Pl P2) iG(l 2) on r b (2.5)
#

where g pwd/#, # is the dynac viscosity, p is the constt density of the fluid d d is a coefficient

wch has the dimension of lenh. It should be noted here if the porous flow tough the will is

sigficant, condition (2.5) may not be accurate enou. Hence we should cone our investigation to

porous walls th fine pores. Finflly we have the condition for no motion at ite depth,

0 as y (2.6)

d the radiation condition for the outgoing waves

CH1) (gr)e-gy as r (2.7)

where C is multiple constt d H$1)(z) is Hel’s Bessel nction of tMrd nd of order v. The

peter G is a measure of the porous effect. G 0 mes the wMl is impeeable, wMle G
approachesithe wall becomes completely peeable to the fluid.

3. SOLUON
Using the method of sepation of vables and supeosing basic solutions of Laplace’s equation

(2. l) appropriate to the present problem, let

(r, y) [A(k)I,(kr) + B(k)K,(kr)] f(k, y) dk

+ [Jv(gr)+ Hl)(gr)] e-gu (3 2)

0

Or 1 U(y) on r a (2 3)
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2(r, y) C(k)K,(kr) f(k,y)dk / 7Hl(Kr)e-hb (3 2)

where f(k, y) k cosky- K sinky, and, as usual, (J,(z), Yv(z))and (I,(z), K,(z))are respectively the

Bessel and modified Bessel functions ofv-th order

These satisfy (2 2), (2 6) and (2 7) Conditions (2 4) and (2 5) give A, B in terms ofC and a,/ in

terms of 7 as

b tOA
iG

Kf(kb)C, B -[iG + bK’,(kb)I’,(kb)]C,
1 7rb

j:(Kb)H)
7rb [Hl),(gb)]27, Z [G + -- (gb)]’y, (3 3)a
2G

where denotes differentiation with respect to r.

From (3 1), (3 3), (2.3) we get

7r e,V/2 C(k)A(ik) f(k, y) dk + -(K) e-guv(u) (3.4)

in which

A(K) GH(vl)’(Ka) + M(K) H(*)’(Kb) (3.5)

where we have used the Wronskian relations

W[Iv(z), K.(z)]
1

and W[H(v) (z), J,(z)]
2i

Z 7rz

in (3.5)

1 rb[Hl),(Ka)dv(Kb H(,),(Kb)J(Ka)]M(K)

Multiplying (3.4) by e-Kv and integrating with respect to y from 0 to oo we get

27rKAG
7= A(K)

where A=
1

U(V) e-Kv dv.7rK

But U(y) has the unique expansion

U(y) 2fo k(k)
k2 + K2 f(k, y) dk 27rKAe-g (3.6)

where

(k)
1

U(y) f(k, y) dy,
7rk

which can be easily proved by a straightforward application ofthe Fourier sine integral ofU(y).
Comparing (3.4) and (3.6) we obtain

c()
4i e-irv/2kGa(k
r(k + K2)A(ik)

Hence
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bK: (kb)I.(kr)] dk
A(K)

21 b[H),(Kb)]2 j(Kr)l e_K (3 7)

K(kr)dk
2rKAG H(l) (Kr) e_gu
A(K)

The hydrodynamic pressure distribution on the porous wall (r b) is

4 e_,./f ka(k)f(k,y)
P -ipWr Jo (k +K)A(ik)

2rKA H(), (Kr) e-guK’.(kb) dk pw A(K) (3.9)

and the free surface elevation is

’] 2rK A H(wr/2(r
4 KGe_,.v/2 k2a(k)

K(kr)dk + iG (Kr) (3.1 l)
r do (k + K)A(ik) A(K)

The second term on the right hand side of equation (3.11) represents the outgoing waves transmitted

through the porous cylinder.

When the porous wall (r b) is completely permeable i.e. G oo, the velocity potential in the

region r > a is

ka(k)f(k,y) K(kr) H(vl)(Kr) -Ku2
k + K K(ka)

dk- 2rKA H(I),(Ka)e (3. 12)

Also when the porous wall at (r b) becomes impermeable, G 0, the results (3.7), (3.8) reduce to

ka(k)f(k. V) K.(kb)I.(kr) I’.(kb)K(kr)
2

k2 + K2 K.(ka)F(kb K.(kb)F.(ka
dk

H(1)’ (gb)J,(gr) J(gb)H(1) (gr)
+ 2KA H(),(ga)j(gb)_ H(l),(gb)j(ga)

e

2 0

This solution is valid only when the quantity

Y’(Ka)J(Kb) Y’(Kb)J:(Ka) (3.13)

is different from zero. However, it indicates that when this quantity vanishes, resonance occurs and

linearized theory for small motion cannot be applied.
In the particular case when U(y) Ve-Kv, where V is a real constant, we have
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1 1 2V [G + 7rbJtv(Kb)U(vl)’(Kb)JU(vl)(Kr)- - 7rb[u(vl)’(Kb)]2- A(K)

H(vl)(gr)]e-K (3.14)

GV
2 H(ol)(Kr)e-gv

(K)
(3.15)

The distribution of pressure on r b is

p pwV H(l),(Kb)e_Ku
&(K)

(3.16)

4. THE FINITE DEPTH CASE
Now we consider the case of finite depth h. Using the same notation and coordinates, the complex

potentials es, J 1, 2, for the motion in the fluid regions a < r < b, r > b are the solutions of the

boundary value problem stated in Section 2 with conditions (2.6), (2.7) replaced by

0

O-- es 0 on y h, (4.1)

2 CH(v1) (kor) cosh ko(h y) as r - oo (4.2)

when C is a constant multiple, k0 is the real positive root of

ksinhkh- Kcoshkh =0.

The method of separation of variables can also be used here to get solutions for the equations (2.1) that

satisfy (2.2), (4.1) and (2.2), (4.1), (4.2). Let then

(r, y) Z [A.I(k.r) + B.K(k.r)] cos k. (h y)
n=l

+ [aJ(kor) + flHv(1)’(kor)] cosh ko(h y) (4.3)

2(r’ Y) ZCnKv(knr) cos kn (h y) + H(vl) (kor) cosh kn (h y) (4.4)

where k. are the real positive roots of

ksinkh + K coskh 0.

The remaining conditions (2.3)-(2.5) are satisfied if

-ri e_,v/2 7 ZX(ko) cosh k0(h y)U(y) ZC,.,A(ik,.,)cosk,(h y) + (4.5)

since the eigenfunctions coshko(h- y) and cosk.(h- y) are orthogonal over the inteval (O,h), we

obtain the constants as

Cn 8i e-‘v/9
knanG cosh knh koaoG cosh koh

6, A (ik,) 7= -4 60 A (iko)

where

5o 2koh + sinh2koh, 5. 2k.h + sinh2k.h,
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a/oh7r cosh koh
U (y) cosh koh dy

arl
f
I

h

U (y) cos k,,hdy
1

r cos kh o

Consequently

1 8e-"v/2 E= ak6(ik)COS kh bK.’2 (kb)Io(kr) JiG + bKo(k.b)’

I(kb)]g.(k.r)l cos k(h- y)

o(o)
b g(b) .(o) V +

2 8 iG e-v/2 - alen cos kh Kv(knr) coskn(h y)
/()

+ 47rG
aoko cos5 koh H() (kor) cosh ko (h y)
o/(o)

We consider the following two special cases.

(i) When U(y) V, (V is a constant). In this case

V V
ao tanh koh, a, tanh knh

rko r.
Therefore

(ii)

8iVG -,v12 sink,h
71" n=l

sinhkoh H(l) (kob) cosh ko(h y)+ 4va
6oA(ko)

When U(y) V cosh ko(h y), we get

6oV
47rko cosh koh

and

(4.6)

(4.7)

(4.8)

(4.9)
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z(o)
(H’(o))’Jo(o)- [a +

H()(kor) coshko(h- y) (4.10)

VG
2- nl(:o")cosh o(h- v),

A(k0)
(4.11)

5. OBLIQUE WAVES GENERATED BY THE POROUS WALL
If we now let the porous wall oscillate obliquely with velocity U(V)exp(- iwt + ivO) while the

impermeable wall at r a be kept fixed, then the new boundary value problem is the same as stated in

Section 2 except that the boundary conditions (2 3), (2.5) are replaced by

0
Or 1 0 on r a (5.1)

0
0-; u(v) ia(l ) on r (5.2)

Thus when the porous wall is the wave generator we have

4be_,v/2fo ka(k)f(k,y)
[iv(kr)K,(ka)_Kv(kr)i,v(ka)]K,(kb)dk

7r (k + g2)A(ik)
7r2bgA

[Jv(kr)H(v),(ga) ()(gr)J’(ga)]H()’t, (gb)e-gv (5.3)
/(g)

(5.4)

When M 0, the waves are trapped in the bounded region between the two cylinders a < r < b and no

waves radiate away from the wall, liquid simply piles up around the wall.

6. WAVE TRAPPING
In this section we investigate an interesting application of the above results to the case of a time

cylindrical wave CH(2)(kR)exp(ivO- Ky) incident obliquely, proceeding from infinity, the porous

cylindrical wall at r b and the impermeable cylindrical wall at r a both fixed. The velocity potentials
Ca(r, y) are functions that satisfy (2.1), (2.2) and (2.6). On the porous wall

2 =
iG(1 ),

and on the impermeable wall

(6.1)

Moreover

(6.2)

as r oo (6.4)2 - CH(2) (Kr)e-gu + AH(1) (Kr)e-gu

0
Or 1 0 Off r a (6.3)
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Here A (to be determined) is a complex constant relating to the amplitude and phase of the reflected

wave

Consider the functions

(r, y)- 2C J,(Kr)e-K

These new functions satisfy equations (2 1) and the free surface boundary conditions On the porous wall

( b),

0Oq
l’IJ lJ (6.5)

Or Or

and on the impermeable wall

iG(l 2)- 2C J’(Kb)e-Ku (6.6)

0
--ffl 2C J’(Ka)e--Ky (6.7)
Or

And

2 (A c)g(vl)(gr)e-Ky as r cx. (6.8)

Since the present problem is linear, II/1, I,I/2 call be obtained by a suitable superposition of the results

(3 7), (5.3) and (3.8), (5 4) respectively. Hence

2CG
[j(Kr)H(I),(Ka j(Ka)H(l)(Kr)]e_ly (6.9)- A(K)

/k,(K) ()(Kr)+CH(f)(Kr)]e-Ky (6.10)2 -C
/k(K)

where A*(K) G H(2)’(Ka) + M(K)H(,,2)’(Kb).
The coefficient of reflection R is defined as the square of the ratio of the amplitude of the reflected

wave to the amplitude to the incident wave i.e.

A*(K)
/(K)

0 2M2G +/32M2

a2 + 2M2G +/02M2 (6.11)

where a2 rb[j2(Ka)+ y2(Ka) f12 ’rb[j2(Kb)+ Y2(Kb)] when the wall at r b is

impermeable i.e., when G 0, the incident wave is totally reflected by it. We get the same situation

when the wall (r b) is completely permeable but now the wave is totally reflected by the impermeable
wall at r a. We note also that when M 0 i.e. when a and b has values satisfying the equation

J(gb)Y’(ga) J’(ga)Y(gb) 0, (5.12)

the incident wave is totally reflected (R 1) at r b irrespective of the value of G. By simple

differentiation of (6.11) with respect to G for any fixed values ofa and b, R reduces to a minimum,

cq3-M
(6.13)Rm,n

a,t3 + M

when G M__y. this minimum value vanishes when a/3 M i.e., when a and b satisfy the equation

TI(Kb)J,(Ka) + (Kb)r((Ka) O, (6.14)

That is R 0 when G =/3 and a, b has values satisfying equation (6.14). Under these circumstances

the porous wall acts as an efficient wave absorber or eliminator for the incident waves, i.e., for G =/3
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and for values of a and b which satisfy equation (6 14), there is a wave trapping phenomenon, that is

waves will be trapped inside the region a _< r _< b

Now we give an estimate for Rm. (equation (6 13)) for large Ka and Kb for the case of radial

incident waves (v 0) This can be done using the asymptotic formulas of J1 (Kr) and Y1 (Kr) for

larger Kr which are

J(,’/~ si ,- Y(,’/~ cos ,- -In this case

a b 2 M b
1, -sinK(b- a)

K a K K a

Thus

Pqln
1 sinK(b a)
1 + sinK(b- a)

and therefore, Rm,n 0 when K(b-a)= + 7rs, s 0,1,2,.... This means the porous wall

together with the fluid region between it and the impermeable wall acts as an efficient wave absorber for
4(b-a)incident waves ofwave length In fact this result agrees with that obtained in the two dimensional

surface wave case treated in [13].
7. NUMERICAL RESULTS

For radial incident waves (v 0), since

dg(Kr) KJI(Kr) and Yg(Kr) KY,(Kr)

the conditions (6.14) for wave trapping and (6.12) for total reflection become

J1 (Kb)Jx (Ka) + Y (Kb)Y1 (Ka) O, (7.1)

J1 (Kb)J1 (Ka) Y1 (Kb)Y1 (Ka) O, (7.2)

Y(gb)].respectively For those values of ga and gb which satisfy (7.1), - 7rbg [J21 (gb) +
When the angle of incident waves makes 30 with the radial direction (v 0.5), since

J1/(Kr) i-r sinKr Y1/2(Kr) i-r cos Kr,

conditions (6.14) and (6.12) now take the simpler forms

(4abK + 1)cosK(b-a) + 2K(b- a)sinK(b- a) O, (7.3)

2K(b a)cosK(b- a) (4abK + 1) sinK(b a) 0. (7.4)

GThus for the case of v 0.5 and those values of Ka, Kb which satisfy (6.3), 1 4- 4-" For fixed

Ka or Kb equations (7.1)-(7.4) has infinite number of real roots. Table lists the first few roots

Kb( > Ka) of equations (7.1), (7.3) which correspond v 0 and v 0.05 respectively for fixed
GKa 27r and the corresponding value of at each Kb Table 2 lists also the first few roots of (7.2),

(7.4) for Ka 2rr and . We note that for all cases listed successive large roots differ approximately by
r and that 1.
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Table 1 Values of Kb( > Ka) and G/K for wave trapping

v=0

7 86568689

G/K
0’0597502

51.88810767

v=0.5

-6 5i475569
9 68134717

G/K
00589039

50 56376335

11 02072268 1.00306449 1.00266728
14 16981407 00185914 12 83560523 00151743
17 31618973 00124677 15 98486294 00097841
20 46109864 00089374 19 13159616 00068303
23 60512575 00067188 22 27677662 00050377
26 74858147 00052344 25.42124425 1.00038685
29 89164583 1.00041925 8 56500080 1.00030639
33.03443042 00034334 31.70832819 1.00024865
36 17700808 00028632 34 85134260 1.00020583
39 31942840 00024241 37 99412174 1.00017138
42.46172629 00020788 41.13671958 1.00014773
45 60392703 1.00018023 44.27917471 1.00012751
48 74604942 1.00015775 47.42151553 00011117

00013923 1.00009778

Table 2 Values ofKb( > Ka) for complete reflection

Ka 2r

9.44431648

v=O

Ka r/2
4.84806631

v=0.5

Ka 27r

9 45133478

Ka r/2
4.91926471

12.59573441 8.01922751 12 60613831 8.10050436
15.74324000 11 17382989 15 75564940 11.25936504
18.88878187 14.32274063 18.90252072 14.41065337
22.03319888 17.46902417 22.04788468 17.55846006
25.17691168 20.61387985 25.19230664 20.70437653
28’.32015444 23.75787344 28.33610051 23.84915194
31.46306786 26.90130671 31.47945463 26.99318555
34.60574159 30.04435529 34.62248884 30.13670974
37.74823545 33.18712837 37.76528307 33.27986897
40.89059088 36 32969739 40.90789266 36.42275777
44 03283750 39.47211105 44 05035712 39.56544062
47.17499704 42.61440369 47 19270547 42.70796301

45.7566002450.31708581
53.459116’28

50.33495946
53 47135248.89871921

45.85035794
48.99264994
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