THE REGULAR OPEN-OPEN TOPOLOGY FOR FUNCTION SPACES

KATHRYN F. PORTER

Department of Mathematical Sciences Saint Mary's College of California Moraga, CA 94575

(Received July 6, 1993 and in revised form March 13, 1995)

ABSTRACT. The regular open-open topology, T_{roo} , is introduced, its properties for spaces of continuous functions are discussed, and T_{roo} is compared to T_{oo} , the open-open topology. It is then shown that T_{roo} on H(X), the collection of all self-homeomorphisms on a topological space, (X,T), is equivalent to the topology induced on H(X) by a specific quasi-uniformity on X, when X is a semi-regular space.

KEY WORDS AND PHRASES. Compact-open topology, admissible topology, open-open topology quasi-uniformity, regular open set, semi-regular space, topological group.
1992 AMS SUBJECT CLASSIFICATION CODES. Primary 54C35, 57S05 Secondary 54H99.

1. INTRODUCTION.

A <u>set-set topology</u> is one which is defined as follows: Let (X,T) and (Y,T^*) be topological spaces. Let U and V be collections of subsets of X and Y, respectively. Let $F \subset Y^X$, the collection of all functions from X into Y. Define, for $U \in U$ and $V \in V$, $(U,V) = \{f \in F : f(U) \subset V\}$. Let $S(U,V) = \{(U,V) : U \in U \text{ and } V \in V\}$. If S(U,V) is a subbasis for a topology T(U,V) on F then T(U,V) is called a set-set topology.

Some of the most commonly discussed set-set topologies are the <u>compact-open topology</u>, T_{co} , which was introduced in 1945 by R. Fox [1], and the <u>point-open topology</u>, T_p . For T_{co} , U is the collection of all compact subsets of X and $\mathbf{V} = T^*$, the collection of all open subsets of Y, while for T_p , U is the collection of all singletons in X and $\mathbf{V} = T^*$.

In section 2 of this paper, we shall introduce and discuss the regular open-open topology for function spaces. It will be shown which of the desirable properties T_{roo} possesses. In section 3, Pervin and almost-Pervin spaces are explained.

The fact that T_{roo} , on H(X), is actually equivalent to the regular-Pervin topology of quasiuniform convergence will be discussed in section 4 along with the topic of quasi-uniform convergence. The advantage of the regular open-open topology is the set-set notation which provides us with simple notation and, hence, our proofs are more concise than those using the cumbersome notation of the quasi-uniformity.

We assume a basic knowledge of quasi-uniform spaces. An introduction to quasi-uniform spaces may be found in Fletcher and Lindgren's [2] or in Murdeshwar and Naimpally's book [3].

Throughout this paper we shall assume (X, T) and (Y, T^*) are topological spaces.

2. THE REGULAR OPEN-OPEN TOPOLOGY.

A subset, W, of X is called a <u>regular open set</u> provided $W = Int_X(Cl_X(W))$. If we let U be the collection of all regular open sets in X and $V = T^*$, then $S_{roo} = S(U, V)$ is the subbasis for a topology, T_{roo} , on any $F \subset Y^X$, which is called the <u>regular open-open topology</u>.

A topological space, X, is called <u>semi-regular</u> provided that for each $U \in X$ and each $x \in U$ there exists a regular open set, V, in X, such that $x \in V \subset U$. One can easily show that if (X,T) is a semi-regular space then $T_{roo} \subset T_{oo}$, the <u>open-open topology</u> (Porter, [4]) which has as a subbasis the set $S_{oo} = \{(U, V) : U \in T \text{ and } V \in T^*\}$.

We now examine some of the properties of function spaces the regular open-open topology possesses. The first two theorems also hold for the open-open topology even even when X is not semi-regular. The proofs of these two theorems are straightforward and are left to the reader.

THEOREM 1. Let (X, T) be a semi-regular space and $F \subset C(X, Y)$. If (Y, T^{\bullet}) is T_i for i = 0, 1, 2, then (F, T_{roo}) is T_i for i = 0, 1, 2.

A topology, T', on $F \subset Y^X$ is called an <u>admissible</u> (Arens [5]) topology for F provided the evaluation map, E: $(F,T') \times (X,T) \to (Y,T^*)$, defined by E(f,x) = f(x), is continuous.

THEOREM 2. If $F \subset C(X, Y)$ and X is semi-regular, then T_{roo} is admissible for F.

Arens also has shown that if T' is admissible for $F \subset C(X, Y)$, then T' is finer than T_{co} . From this fact and Theorem 2, it follows, as it does for T_{co} , that $T_{co} \subset T_{roo}$ when X is semi-regular.

THEOREM 3. The sets of the form (U, V) where both U and V are regular open sets in X form a subbasis for $(H(X), T_{roo})$.

PROOF. Let (U, V) be a subbasic open set in $(H(X), T_{roo})$. i.e., U is a regular open set and O is an open set, not necessarily regular. Let $f \in (U, O)$. Then $f(U) \subset O$, so $f \in (U, f(U)) \subset (U, O)$ and f(U) is a regular open set.

Let (G, \circ) be a group such that (G, T) is a topological space, then (G, T) is a <u>topological group</u> provided the following two maps are continuous. (1) $m: G \times G \to G$ defined by $m(g_1, g_2) = g_1 \circ g_2$ and $\Phi: G \to G$ defined by $\Phi(g) = g^{-1}$. If only the first map is continuous, then we call (G, T) a quasi-topological group (Murdeshwar and Naimpally [3]).

Note that H(X) with the binary operation o, composition of functions, and identity element e, is a group. It is not difficult to show that if (X,T) is a topological space and G is a subgroup of H(X) then (G, T_{oo}) is a quasi-topological group. However, (G, T_{oo}) is not always a topological group (Porter, [4]) since Φ is not always continuous although m is always continuous. But we discover the following about the regular open-open topology.

THEOREM 4. Let X be a semi-regular space and let G be a subgroup of H(X). Then (G, T_{roo}) is a topological group.

PROOF. Let X be a semi-regular space and let G be a subgroup of H(X). Let (U, V) be a subbasic open set in T_{roo} such that both U and V are regular open sets. Let $(f,g) \in m^{-1}((U,V))$. Then, $f \circ g(U) \subset V$ and $g(U) \subset f^{-1}(V)$. So, $(f,g) \in (g(U), V) \times (U, g(U)) \in T_{roo} \times T_{roo}$. But $(g(U), V) \times (U, g(U)) \subset m^{-1}((U, V))$. Thus, m is continuous.

Note that the inverse map $\Phi: G \to G$ is bijective and that $\Phi^{-1} = \Phi$. Thus, in order to show that Φ is continuous, it suffices to show that Φ is an open map. To this end, let (O, U)be a subbasic open set in T_{roo} where O and U are both regular open sets. Clearly, $\Phi((O, U)) =$ $((X \setminus U), (X \setminus O))$ since we are dealing with homeomorphisms. Note that if C, K are regular closed sets then $Int_X C$, $Int_X K$ are regular open sets. Thus, since $(X \setminus O), (X \setminus U)$ are regular closed sets, $Int_X(X \setminus U), Int_X(X \setminus O)$ are regular open sets. Again, since G is a set of homeomorphisms, $(X \setminus U, X \setminus O) = (Int_X(X \setminus U), Int_X(X \setminus O))$ but this is in T_{roo} . Therefore, $\Phi(O, U)$ is an open set in T_{roo} . So, Φ is open and we are done.

.3. PERVIN AND ALMOST-PERVIN SPACES.

A topological space, (X,T), is called a <u>Pervin space</u> (Fletcher [4]) provided that for each finite collection, \mathcal{A} , of open sets in X, there exists some $h \in H(X)$ such that $h \neq e$ and $h(U) \subset U$ for all $U \in \mathcal{A}$. A topological space, (X,T) is called <u>almost-Pervin</u> provided that for each finite collection, \mathcal{A} , of regular open sets, there exists some $h \in H(X)$ such that $h \neq e$ and $h(O) \subset O$ for all $O \in \mathcal{A}$.

Topologies are rarely interesting if they are the trivial or discrete topology. We have previously shown (Porter, [4]) that $(H(X), T_{oo})$ is not discrete if and only if (X, T) is a Pervin space. The situation for T_{roo} is similar.

THEOREM 5. $(H(X), T_{roo})$ is not discrete if and only if (X, T) is almost-Pervin.

PROOF. First, assume that (X,T) is an almost-Pervin space. Let W be a basic open set in T_{roo} which contains e; i.e. $W = \bigcap_{i=1}^{n} (O_i, U_i)$ where $O_i \subset U_i$ for each i = 1, 2, 3, ..., n and O_i and U_i are regular open sets in X. $\{O_i : i = 1, 2, 3, ..., n\}$ is a finite collection of regular open sets in X, and X is an almost-Pervin space, hence, there exists some $h \in H(X)$ such that $h \neq e$ and $h(O_i) \subset O_i \subset U_i$. So, $h \in W$ and $h \neq e$. Therefore, $(H(X), T_{roo})$ is not a discrete space.

Now assume that $(H(X), T_{roo})$ is not discrete. Let V be a finite collection of regular open sets in X. Let $O = \bigcap_{U \in V} (U, U)$. Then, O is a basic open set in $(H(X), T_{roo})$ which is not a discrete space. Hence, there exists $h \in O$ with $h \neq e$. So, (X, T) is almost-Pervin.

The above proof, along with the few needed definitions involving T_{roo} , is an example of the simplification that the definition of T_{roo} offers over the quasi-uniform definition and notation.

4. QUASI-UNIFORM CONVERGENCE.

Recall that if Q is a quasi-uniformity on X, then the topology, T_Q , on X, which has as its

neighborhood base at $x, B_x = \{U[x] : U \in Q\}$, is called the <u>topology induced by Q</u>. The ordered triple (X, Q, T_Q) is called a <u>quasi-uniform space</u>. A topological space, (X, T) is <u>quasi-uniformizable</u> provided there exists a quasi-uniformity, Q, such that $T_Q = T$. In 1962, Pervin [7] proved that every topological space is quasi-uniformizable by giving the following construction.

Let (X,T) be a topological space. For each $O \in T$, define the set $S_O = (O \times O) \cup ((X \setminus O) \times X)$. Let $S = \{S_O : O \in T\}$. Then S is a subbasis for a quasi-uniformity, P, for X, called the <u>Pervin quasi-uniformity</u> and, as is easily shown, $T_P = T$.

If we use the same basic structure as above but change the subbasis to $S = \{S_O : O \text{ is a regular} open set \}$ then the quasi-uniformity induced will be called the regular-Pervin quasi-uniformity, RP.

If (X,Q) is a quasi-uniform space then Q induces a topology on H(X) called the topology of quasi-uniform convergence w.r.t. Q, as follows: For each set $U \in Q$, let us define $W(U) = \{(f,g) \in$ $H(X) \times H(X) : (f(x),g(x)) \in U$ for all $x \in X\}$. Then, $B(Q) = \{W(U) : U \in Q\}$ is a basis for Q^* , the <u>quasi-uniformity of quasi-uniform convergence w.r.t. Q (Naimpally [8]). Let T_{Q^*} denote the topology on H(X) induced by Q^* . T_{Q^*} is called the <u>topology of quasi-uniform convergence w.r.t. Q^* .</u> If P is the Pervin quasi-uniformity on X, T_{P^*} is the <u>Pervin topology of quasi-uniform convergence</u> and if RP is the regular-Pervin quasi-uniformity on X, then T_{RP} is called the <u>regular-Pervin topology</u> of quasi-uniform convergence, T_{RP^*} .</u>

It has been shown that the open-open topology is equivalent to the Pervin topology of quasiuniform convergence (Porter, [4]). It is also true that the regular open-open topology is equivalent to the regular-Pervin topology of quasi-uniform convergence. The method of two proofs are exactly the same and we leave this one for the reader.

THEOREM 6. Let (X,T) be a topological space and let G be a subgroup of H(X). Then, $T_{roo} = T_{RP}$ on G.

ACKNOWLEDGEMENT. The author would like to thank the Committee for Faculty and Curriculum Development at Saint Mary's College for their financial support.

REFERENCES

- 1. FOX, R., On Topologies for Function Spaces, Bull. Amer. Math. Soc., 51 (1945), 429-432.
- FLETCHER, P. and LINDGREN, W., Quasi-uniform Spaces, <u>Lecture Notes in Pure and Applied</u> <u>Mathematics</u>, <u>77</u>, Marcel Dekker, 1982.
- 3. MURDESHWAR, M., and NAIMPALLY, S., Quasi-Uniform Topological Spaces, Noordoff, 1966.
- PORTER, K., The Open-Open Topology for Function Spaces, <u>Inter. J. Math. and Math. Sci.</u>, <u>12</u> no. 1 (1993), 111-116.
- 5. ARENS, R., Topologies for Homeomorphism Groups, Amer. J. Math., 68 (1946), 593-610.
- 6. FLETCHER, P., Homeomorphism Groups with the Topology of Quasi-uniform Convergence, <u>Arch. Math., 22</u> (1971), 88-92.
- 7. PERVIN, W., Quasi-Uniformization of Topological Spaces, Math. Ann. 147 (1962), 316-317.
- 8. NAIMPALLY, S., Function Spaces of Quasi-Uniform Spaces, Indag. Math., 68 (1965), 768-771.