A CHARACTERIZATION OF POINT SEMIUNIFORMITIES

JENNIFER P. MONTGOMERY

Lousiana State University at Alexandria Division of Sciences 8100 Highway 71 South Alexandria, Louisiana 71302-9633 (Received October 21, 1994)

ABSTRACT. The concept of a uniformity was developed by A. Weil and there have been several generalizations. This paper defines a point semiuniformity and gives necessary and sufficient conditions for a topological space to be point semiuniformizable. In addition, just as uniformities are associated with topological groups, a point semiuniformity is naturally associated with a semicontinuous group. This paper shows that a point semiuniformity associated with a semicontinuous group is a uniformity if and only if the group is a topological group.

KEY WORDS AND PHRASES: Uniformity, point semiuniformity, vicinities, point semiuniformizable, homogeneous, topological group, semicontinuous group, semifundamental system, point regular, bihomogeneous. 1991 AMS MATHEMATICS SUBJECT CLASSIFICATION CODES: Primary 53E15; Secondary 54H11.

Introduction. In 1937, A. Weil [1] generalized the concept 1. of a metric space by defining a topology-generating structure called a uniformity. There have been several generalizations of uniformities. For example, a semiuniformity, U, for a set X is a filter of supersets of the diagonal in $X \times X$ such that for each U in U, there is a V in U such that $V^{-1} = \{(y, x) | (x, y) \in V\} \subseteq U$. As with a uniformity and its other generalizations, there is a natural way to try to construct neighborhoods of points. Namely, for each x in X and U in U we define a slice, U[x], to be $\{y|(x,y)\in U\}$. For a semiuniformity, the collection $\{U[x]\}$ does generate a topology on X but we are left with the unsatisfactory situation that some of the slices are not neighborhoods in this topology. In [2], W. Page gets around this semiuniformity problem by calling a a t.semiuniformity (for topological semiuniformity) if all the slices turn out to be neighborhoods, and he proves that a space is t semiuniformizable (there is a t-semiuniformity which generates the topology) if and only if the space satisfies a certain separation property. We take a different approach. We define a point semiuniformity, P, to be a semiuniformity with the added condition that for every $S \in \mathbb{P}$ there is a TEP having for each $(x,y) \in T$ a VEP such that $(x,y) \circ V$ and $V \circ (x,y)$ are We will show that the slices gotten from ${\ensuremath{\mathbb P}}$ will contained in S. always be neighborhoods in the topology generated by P and that a space is point semiuniformizable if and only if it satisfies the same separation property referred to above.

The natural association of uniformities with topological groups, or more exactly, with a fundamental system of a topological group is well known. We show that a point semiuniformity is just as naturally associated with a semicontinuous group [3] (called semitopological groups by Bourbaki [4] and L. Fuchs [5]). A semicontinuous group is a group with a topology making inversion and left and right multiplication by single elements continuous. We show that the point semiuniformity associated with a semicontinuous group is a uniformity if and only if the group is a topological group.

2. Point Semiuniformity

We begin by formalizing our definitions. A point semiuniformity for a set X is a filter P of subsets of $X \times X$ such that $\forall S \in P$,

- 1) ∆⊆S
- 2) $\exists T \in \mathbb{P}$ such that $T^{-1} \subseteq S$
- 3) ∃T∈P such that for each (x,y)∈T there is a V∈P with V∘(x,y)⊆S and (x,y)∘V⊆S.

A pair (X, \mathbb{P}) consisting of a set X and a point semiuniformity \mathbb{P} on $X \times X$ is called a point semiuniform space. We call β a base for a point semiuniformity \mathbb{P} if and only if the collection of all supersets of elements of β is \mathbb{P} . It is clear that any filter base satisfying the three conditions above is a base for a point semiuniformity.

THEOREM 1. Let P be a point semiuniformity for a set X and let $\mathbb{P}_x = \{S[x] \mid S \in \mathbb{P}\}$. Then $\{\mathbb{P}_x \mid x \in X\}$ forms a neighborhood base for a topology τ on X.

PROOF. Clearly, for all $S, T \in \mathbb{P}$, $x \in S[x]$ and $S[x] \cap T[x] = (S \cap T)[x]$.

Now let $S[x] \in \mathbb{P}_x$. Since $S \in \mathbb{P}$ then $\exists T \in \mathbb{P}$ with the property that for each $(a,b) \in T$, $\exists U_{(a,b)} \in \mathbb{P}$ with $U_{(a,b)} \circ (a,b) \leq S$. In addition, since $(x,x) \in T$ then $\exists U_{(x,x)} \in \mathbb{P}$ with $U_{(x,x)} \circ (x,x) \leq S$. Since $U_{(x,x)} \in \mathbb{P}$ then $\exists V \in \mathbb{P}$ with the property given any $(s,t) \in V \exists W_{(s,t)} \in \mathbb{P}$ with $W_{(s,t)} \circ (s,t) \leq U_{(x,x)}$. Now $V[x] \in \mathbb{P}_x$ and thus we must show that a neighborhood of each point of V[x] is contained in S[x]. Suppose that $y \in V[x]$ then $(x,y) \in V$. Now $\exists W_{(x,y)} \in \mathbb{P}$ such that $W_{(x,y)} \circ (x,y) \leq U_{(x,x)}$. It suffices to show $W_{(x,y)}[y] \leq S[x]$. Therefore, let $z \in W_{(x,y)}[y]$ and so $(y,z) \in W_{(x,y)}$ which implies that $(x,z) \in W_{(x,y)} \circ (x,y) \leq U_{(x,x)}$.

Hence, $(x,z) = (x,z) \circ (x,x) \in U_{(x,x)} \circ (x,x) \subseteq S$. Consequently, $z \in S[x]$.

A uniformity U is a semiuniformity with the property that for each UeU, there is a VeU such that VoVEU. Thus, we see that every uniformity is a point semiuniformity and every tosemiuniformity is a point semiuniformity. We now turn our attention to which topologies can be generated by these point semiuniformities. Any topology thus induced is called a *point semiuniform topology* and the space is called a *point semiuniformizable topological space*. The finite complement topology on an infinite space is point semiuniformizable, but since the space is not completely regular, it is not uniformizable. In [2], Page shows that a space is tosemiuniformizable if and only if $\forall x, y \in X$, $x \in Cl_{\tau}\{y\}$ iff $y \in Cl_{\tau}\{x\}$. We restate this closure condition in an equivalent form.

DEFINITION. A topological space (X,τ) is point regular (or p·regular) if and only if for every V $\epsilon\tau$ and for every $x \epsilon V$, $Cl_{\tau}\{x\} \leq V$.

The next proposition states some of the basic topological properties possessed by $p \cdot regular$ spaces.

PROPOSITION 2.

- i) Every regular space or T_1 -space is a p-regular space.
- ii) A p regular, T_0 -space is a T_1 -space.
- iii) The continuous closed image of a p·regular space is a p·regular space, but the quotient of a p·regular space need not be p·regular.
- iv) Products and subspaces of p·regular spaces are p·regular.
- N) Although homogeneous spaces need not be p·regular,
 bihomogeneous spaces are p·regular.

In [2], Page shows that a space X is tosemiuniformizable if and only if it is poregular. In his proof, he constructs a tosemiuniformity as follows: For each $x \in X$, let u_x be a neighborhood of x and let $R=U(x \times u_x)$ and $S=R \cup R^{-1}$. The collection β of all such $S \subseteq X \times X$ forms a base for a tosemiuniformity which induces the original topology τ . However, a tosemiuniformity need not be a point semiuniformity as the following example shows.

EXAMPLE 3. Consider R, the real numbers, with the usual topology. For each reR, choose neighborhoods, u_r , as follows: Let $u_1=R$. For each element of the sequence $<1-1/n>_{n=1}^{\infty}$, choose open interval neighborhoods so that

 $1/2 \notin u_0$, $0, 2/3 \notin u_{1/2}$, $1/2, 3/4 \notin u_{2/3}$,...

(k-2)/(k-1), $k/(k+1) \notin u_{k-1/k}$, etc.

For $y \in \mathbb{R} - \{1, 0, 1/2, 2/3, 3/4...\}$, choose any neighborhood u_y of y. Now, let $\mathbb{R} = \bigcup_{r \in \mathbb{R}} (r \times u_r)$ and let $S = \mathbb{R} \cup \mathbb{R}^{-1}$. Let β be the collection of all such S. Let $B \in \beta$ and we may as well assume $B \leq S$. Then there exists x such that x = 1 - 1/(m+1), m a positive integer, and such that u_x , the neighborhood of x, is strictly contained in B[1], the neighborhood of 1, since any neighborhood of 1 contains a tail of the sequence $<1 - 1/n >_{n=1}^{\infty}$. Then, $(x, 1) \notin x \times u_x$ but $(x, 1) \in B[1] \times 1$. In order to have a point semiuniformity, we need $D \circ (x, 1) \leq S$ for some $D \in \beta$. The composition $D \circ (x, 1) = (\{U_{v \in \mathbb{R}} Y \times D[Y]\} \cup \{U_{v \in \mathbb{R}} D[Y] \times Y\}) \circ (x, 1)$

=($x \times D[1]$) U { (x,y) | 1 $\in D[y]$ }

and recall that $S=(U(r\times u_r)) \cup (U(u_r\times r))$. Now if $x\times D[1] \leq U_{r\in\mathbb{R}}u_r\times r$ then $\forall z\in D[1]$, $x\in u_z$. But $\hat{x} = 1-1/m \in D[1]$ for some integer $m \gg m$ and $x \neq u_{\hat{x}}$. Also, $(x, \hat{x}) \neq x \times u_x$. Hence, although $(x, \hat{x}) \in x \times D[1] \leq D \circ (x, 1)$, $(x, \hat{x}) \neq (U_{r\in\mathbb{R}}(r\times u_r)) \cup (U_{r\in\mathbb{R}}(u_r\times r))$. Thus, $D \circ (x, 1) \notin S$. This example shows that Page's construction of a t-semiuniformity may not be a point semiuniformity. Although t-semiuniformities and point semiuniformities are not the same, they are related as the next theorem shows.

THEOREM 4. A topological space (X,τ) is point semiuniformizable if and only if (X,τ) is poregular.

PROOF. Since one direction is trivial, we only need to show that a p-regular space is point semiuniformizable.

Thus, let β be the collection of all neighborhoods of Δ in $\tau \times \tau$. Clearly, β is a filter that satisfies property 1) and 2) of the definition of a point semiuniformity. Therefore, to show property 3), let Be β which implies that there exists Uet $\times \tau$ with $\Delta \le U \le B$. Let C=U $\cap U^{-1}$. Then C is open and symmetric and $\Delta \le C \le B$. Pick $(x,y) \in C$. We need to find De β with D \circ $(x,y) \le B$ or equivalently, D[y] $\le C[x] \le B[x]$ (The proof of $(x,y) \circ D \le B$ is similar using inverse notation). Let D=C-{ y × (X-C[x]) }.

a) To show that D[y]⊆C[x], suppose that z∉C[x]. Then (y,z)∈y×(X-C[x]) and so (y,z)∉D. Thus, z∉D[y].

b) To show that D is a neighborhood of Δ , consider D'=C- $\{Cl_{\tau}\{y\}\times(X-C[x])\}$.

Since $y \times (X - C[x]) \le Cl_{\tau} \{y\} \times (X - C[x])$, we have that $D' \le D$. Thus, since D' is open, we only need to show that $\Delta \le D'$.

Case 1] Suppose $(z,z) \in \Delta$ with $z \in Cl_{\tau}\{y\}$. Since (X,τ) is p·regular, $y \in Cl_{\tau}\{z\}$ and since $(x,y) \in C$ implies that $y \in C[x]$, then $z \in C[x]$. Thus, $(z,z) \in C-\{Cl_{\tau}\{y\} \times (X-C[x])\}=D'$.

Case 2] Suppose $(z,z) \in \Delta$ with $z \notin Cl_{\tau} \{y\}$. Then $(z,z) \in D'$ and hence, $\Delta \subseteq D'$.

Clearly, $B[x]\in\tau$, $\forall B\in\beta$ and $B\in\tau\times\tau$ which implies that the topology on X generated by β is contained in τ . Conversely, let $x\inW\in\tau$. Choose a cover of X by τ -open neighborhoods $\{V_y \mid y\in X\}$ such that $V_x\subseteq W$ and $x\in X-V_y$ for $y\notin Cl_{\tau}\{x\}$ and $V_y=V_x$ if $y\in Cl_{\tau}\{x\}$ (or equivalently, $x\in Cl_{\tau}\{y\}$). Let $S=U_{Y\in X}V_y\times V_y$. Clearly, $\Delta\subseteq S$ and S is open in $X\times X$. Also, $S[x]=U_{X\in V_y}V_y=V_x$. Hence, $x\in S[x]=V_x\subseteq W$. Therefore, W is open in the topology on X generated by β . Thus, τ is contained in the topology on X generated by β .

Although we used neighborhoods of Δ in the product topology in the proof above, we could have used neighborhoods of Δ in ($\tau \times$ discrete) \cap (discrete $\times \tau$) which would give us a finer point semiuniformity inducing the same topology.

Theorem 4 proves that t·semiuniformizable and point semiuniformizable are equivalent notions for a topological space;

314

however, this is their only similarity. From the examples we note that vicinities in a t-semiuniform base are constructed simply by forming "crosses" along the diagonal; whereas, in a point semiuniform base vicinities are more carefully constructed possessing "crosses" at each point.

PROPOSITION 5. Let $\{U_{\alpha}\}_{\alpha \in \Lambda}$ be a collection of point semiuniformities for X. Let β be the collection of all finite intersections of elements of $U_{\alpha \in \Lambda} U_{\alpha}$. β is a base for a point semiuniformity which is the join of the family $\{U_{\alpha}\}_{\alpha \in \Lambda}$.

Let $\{V_{\alpha}\}_{\alpha \in \Lambda}$ be a family of point semiuniformities for the set X. Let C be the family of all point semiuniformities coarser than each V_{α} , $\alpha \in \Lambda$. C is a nonempty collection since $\{X \times X\}$ is a point semiuniformity coarser than each V_{α} , $\alpha \in \Lambda$. Then the meet of the family $\{V_{\alpha}\}_{\alpha \in \Lambda}$ is $V_{U \in \mathbb{C}}U$.

Thus, if we let X be a fixed set and we consider the collection of point semiuniformities for X, then this collection forms a complete lattice when ordered by set inclusion.

THEOREM 6. If β is a finite base for a point semiuniformity then β is a base for a uniformity.

PROOF. Let $B \in \beta$. Since β is a base for a point semiuniformity, then there exists $C \in \beta$ such that for each $(x, y) \in C$ there exists $D_{(x, y)} \in \beta$ with $D_{(x, y)} \circ (x, y) \leq B$. Now, since β is a finite base, then the set $S = \{ D_{(x, y)} \mid (x, y) \in C \text{ and } D_{(x, y)} \circ (x, y) \leq B \}$ is finite. Thus, there exists $E \in \beta$ with $E \leq (\alpha S) \cap C$. Let $(s, t) \in E \circ E$. Then there exists w such that $(s, w) \in E$ and $(w, t) \in E$. Since $E \leq (\alpha S) \cap C$, which implies that $(s, w) \in C$, then $(w, t) \in D_{(s, w)}$. Therefore, $(s, t) = (w, t) \circ (s, w) \in D_{(s, w)} \circ (s, w) \leq B$.

COROLLARY 7. On a finite set, point semiuniformities and uniformities coincide.

3. Semicontinuous Groups

It is well known that group topologies on a group G are characterized by fundamental systems and fundamental systems give rise to left and right uniformities which give the same topology. A semifundamental system S for a group G is a collection of subsets of G each containing the identity and satisfying the following properties:

- 1) If U,VeS then $\exists W \in S$ such that $W \subseteq U \cap V$
- 2) If U∈S and a∈U then ∃V∈S such that Va⊆U
- 3) If UeS then $\exists V \in S$ such that $V^{-1} \subseteq U$

E. Clay [3] showed that every semicontinuous group has a semifundamental system. Let U be an element of a semifundamental system for a semicontinuous group. Since inversion is continuous, we

can always find a symmetric V such that VSU by letting $V=U\cap U^{-1}$. Consequently, we can always assume that our semifundamental system is a symmetric semifundamental system. The next theorem shows that every semicontinuous group is point semiuniformizable.

THEOREM 8. Let S be a symmetric semifundamental system for a semicontinuous group (G,τ) . Define $L_{U} = \{ (x, y) | x \in yU \} [R_{U} = \{ (x, y) | \}$ Then $L=\{L_U \mid U \in S\}$ [$R=\{R_U \mid U \in S\}$] is a base for a point x∈Uy }] semiuniformity which induces the original topology τ . The point semiuniformity generated by L [R] is called the left [right] point semiuniformity of (G, τ) and is the unique point semiuniformity for G that generates τ and has a base of left [right] invariant sets.

PROOF. Clearly, L is a filter base that satisfies the first two properties of a base for a point semiuniformity.

Let $L_{u} \in L$ and $(x, y) \in L_{u}$. Then y⁻¹x∈U. Ву definition of semifundamental system, we can find WeS such that $Wy^{-1}x \le U$. Let $(x,z) \in L_{u^{\circ}}(x,y)$. Then $(y,z) \in L_y$ which implies that $z^{-1}y \in W$. Therefore, $z^{-1}yy^{-1}x \in Wy^{-1}x \subseteq U$. Thus, $z^{-1}x \in U$ or equivalently, $(x, z) \in L_{U}$.

Let L_u∈L and (x,y)∈L₁₁. Then $y^{-1}x \in U$. By definition of semifundamental system, we can find WeS such that $Wy^{-1}x \le U$. Also, there exists $V \in S$ such that $y^{-1}xV(y^{-1}x)^{-1} \subseteq W$. So then $y^{-1}xV \subseteq Wy^{-1}x \subseteq U$. Let $(z,y) \in (x,y) \circ L_y$. Then (z,x)∈L_v which implies that x⁻¹z∈V. Therefore, $y^{-1}xx^{-1}z \in y^{-1}xV \le U$. Thus, $y^{-1}z \in U$, or equivalently, $(z, y) \in L_{U}$.

To show that this left point semiuniformity generates the topology τ , let U \in S and x \in G. Then $L_U[x] = \{y | (x, y) \in L_U\} = \{y | x \in y U\} =$ $\{y | y \in xU\} = xU.$

Suppose that S is a semifundamental system for a THEOREM 9. If the left or right point semiuniformity is a group (G, \cdot, τ) . uniformity, then S is a fundamental system.

PROOF. Assuming that \$ generates a base for the left uniformity L, then picking U S implies that $L_{U} \in L$ and so, by definition of L, $\exists V \in S$ such that $L_{v} \circ L_{v} \subseteq L_{v}$. If $x \in V \lor V$ then $x = a \lor b$ where $a \in V$ and $b \in V$. Clearly, $x \in a \cdot V$ and $a \in e \cdot V = V$. Therefore, $(x,a) \in L_v$ and $(a,e) \in L_v$. Combining the above yields (x,e)∈L_v∘L_v⊆L_u. Thus, x∈e·U=U.∎

REFERENCES

- WEIL, A. "Sur les espaces a structure uniforme et sur la 1. topologie generale," Actualites Scientific and Industr.,
- no. 551, (1937). PAGE, W. <u>Topological Uniform Structures</u>, Wiley-Interscience 2.
- Publishers, 1978. CLAY, E., CLARK, B., SCHNEIDER, V. "Semicontinuous Groups and Separation Properties," Internat. J. Math & Math. 3. Sci., vol. 15 no. 3 (1992), 621-623.
- BOURBAKI, N. General Topology, parts 1 and 2, Addison-Wesley 4. publishing Company, 1966. FUCHS, L. <u>Infinite Abelian Groups</u>, Vol. 1, Academic Press,
- 5. 1970.