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ABSTRACT. The concept of a uniformity was developed by A.

Well and there have been several generalizations. This

paper defines a point semiuniformity and gives necessary

and sufficient conditions for a topological space to be

point semiuniformizable. In addition, just as uniformities

are associated with topological groups, a point

semiuniformity is naturally associated with a semicontinuous

group. This paper shows that a point semiuniformity

associated with a semicontinuous group is a uniformity

if and only if the group is a topological group.
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1. Introduction. In 1937, A. Well [1] generalized the concept
of a metric space by defining a topology-generating structure called a

uniformity. There have been several generalizations of uniformities.

For example, a semiuniformity, , for a set is a filter of supersets

of the diagonal in such that for each U in , there is a V in

such that V-1={(y,x) l(x,y)V}U. As with a uniformity and its other

generalizations, there is a natural way to try to construct

neighborhoods of points. Namely, for each x in and U in we define

a slice, U[x], to be {yl(x,y)eU}. For a semiuniformity, the

collection {U[x]} does generate a topology on but we are left with

the unsatisfactory situation that some of the slices are not

neighborhoods in this topology. In [2], W. Page gets around this

problem by calling a semiuniformity a t-semiuniformity (for
topological semiuniformity) if all the slices turn out to be

neighborhoods, and he proves that a space is tosemiuniformizable

(there is a t-semiuniformity which generates the topology) if and only

if the space satisfies a certain separation property. We take a

different approach. We define a point semiuniformity, ?, to be a

semiuniformity with the added condition that for every Se there is a

Te having for each (x,y)eT a Ve such that (x,y)oV and Vo(x,y) are

contained in S. We will show that the slices gotten from will

always be neighborhoods in the topology generated by ? and that a

space is point semiuniformizable if and only if it satisfies the same
separation property referred to above.
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The natural association of uniformities with topological groups,
or more exactly, with a fundamental system of a topological group
is well known. We show that a point semiuniformity is just as

naturally associated with a semicontinuous group [3] (called
semitopological groups by Bourbaki [4] and L. Fuchs [5]). A

semicontinuous group is a group with a topology making inversion and

left and right multiplication by single elements continuous. We show

that the point semiuniformity associated with a semicontinuous group
is a uniformity if and only if the group is a topological group.

2. Point Semiuniformity

We begin by formalizing our definitions. A point semiuniformity

for a set is a filter of subsets of such that YS,

i) aS

2) 3T such that T-INS

3) 3T such that for each (x,y)T there is a V with

Vo(x,y)NS and (x,y) oVNS.

A pair (,?) consisting of a set and a point semiuniformity P on

is called a point semiuniform space. We call a base for a

point semiuniformity if and only if the collection of all supersets

of elements of is . It is clear that any filter base satisfying

the three conditions above is a base for a point semiuniformity.

THEOREM i. Let be a point semiuniformity for a set and let

x={S[x] S}. Then {x xe} forms a neighborhood base for a

topology r on .
PROOF. Clearly, for all S,T, xS[x] and S[x]T[x]=(SnT)[x].

Now let S[x]x. Since S then 3T with the property that for each

(a,b) T, 3Ua,b with Ua,bo (a, b)_S. In addition, since (x,x) T

then 3U, with Ux.xo(x,x)_S. Since Ux. then 3V with the

property given any (s,t)V 3Ws,) with W(s,t) (s, t) Ux,x). Now

V[x] and thus we must show that a neighborhood of each point of

V[x] is contained in S[x]. Suppose that yV[x] then (x,y)V. Now

3W, such that Wx, (x, y) U, It suffices to show

W(x,) [y]_cS[x]. Therefore, let zW(x,) [y] and so (y, z) W(x,) which

implies that (x,z)eWx,)o(x,y)_Ux,.
Hence, (x,z)=(x,z)o(x,x)U(x,x)o(x,x)S. Consequently, zS[x]..

A uniformity is a semiuniformity with the property that for

each Ue, there is a V such that VVNU. Thus, we see that every
uniformity is a point semiuniformity and every t.semiuniformity is a

point semiuniformity. We now turn our attention to which topologies
can be generated by these point semiuniformities. Any topology thus

induced is called a point semiuniform topology and the space is called

a point semiuniformizable topological space. The finite complement

topology on an infinite space is point semiuniformizable, but since

the space is not completely regular, it is not uniformizable.
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In [2], Page shows that a space is t-semiuniformizable if and

only if Yx,yX, xClr{y} iff yClr{x}. We restate this closure

condition in an equivalent form.

DEFINITION. A topological space (,r) is point regular (or

p.regular) if and only if for every Vet and for every xV, Clr{x}-V.

The next proposition states some of the basic topological

properties possessed by p-regular spaces.

PROPOSITION 2.

i) Every regular space or T1-space is a p-regular space.

ii) A p.regular, T0-space is a T1-space.

iii) The continuous closed image of a p.regular space is a

p.regular space, but the quotient of a p.regular

space need not be p.regular.

iv) Products and subspaces of p.regular spaces are

p-regular.

v) Although homogeneous spaces need not be p.regular,

bihomogeneous spaces are p-regular.

In [2], Page shows that a space X is t.semiuniformizable if and

only if it is p.regular. In his proof, he constructs a

t.semiuniformity as follows: For each x, let u be a neighborhood

of x and let R=U(xux) and S=RuR-*. The collection B of all such

S= forms a base for a t-semiuniformity which induces the original

topology . However, a t.semiuniformity need not be a point

semiuniformity as the following example shows.

EXAMPLE 3. Consider , the real numbers, with the usual

topology. For each r, choose neighborhoods, ur, as follows: Let

u=. For each element of the sequence <l-I/n>n=,, choose open

interval neighborhoods so that

i/2u0, 0,2/3u/_. i/2,3/4u2/3
(k-2)/(k-l), k/(k+l)uk_I/k, etc.

For y-{i,0,i/2,2/3,3/4...}, choose any neighborhood uy of y. Now,

let R=Ur(rur) and let S=RuR-. Let be the collection of all such

S. Let BB and we may as well assume B=S. Then there exists x such

that x=l-i/(m+l) m a positive integer, and such that ux, the

neighborhood of x, is strictly contained in B[I], the neighborhood of

I, since any neighborhood of 1 contains a tail of the sequence <l-

i/n>n=. Then, (x,l)xu but (x,I)B[I]I. In order to have a point

semiuniformity, we need D(x,I)_=S for some DB. The composition

Do(x,l)=( {UyyD[y]} {yD[y]y} (x,l)

=( x D[I] (x,y) 1 D[y]
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and recall that S=(U(ru)) U ((ur)). Now if xD[l]rUr then

YzD[l], xuz. But R =l-i/m’D[l] for some integer m’>m and xu.
Also, (x,)xu. Hence, although (x,X)xxD[l]Do(x,l),

(x,X)(r(rur)) (Ur(urr)). Thus, Do(x,I)S.

This example shows that Page’s construction of a t.semiuniformity may

not be a point semiuniformity. Although t.semiuniformities and point

semiuniformities are not the same, they are related as the next

theorem shows.

THEOREM 4. A topological space (,r) is point semiuniformizable

if and only if (,r) is p.regular.

PROOF. Since one direction is trivial, we only need to show that

a p.regular space is point semiuniformizable.

Thus, let be the collection of all neighborhoods of in rxr.

Clearly, is a filter that satisfies property i) and 2) of the

definition of a point semiuniformity. Therefore, to show property 3),

let BB which implies that there exists Urr with UB. Let

C=UnU-I. Then C is open and symmetric and ACB. Pick (x,y)C. We

need to find D with Do(x,y)B or equivalently, D[y]=C[x]B[x] (The

proof of (x,y) oDB is similar using inverse notation). Let D=C-{ y

(-c[x]) }.

a) To show that D[y]C[x], suppose that zC[x]. Then

(y,z)y(-C[x]) and so (y,z)D. Thus, zD[y].

b) To show that D is a neighborhood of 4, consider D’=C-

{clr{y} (-c[x]) }.

Since y(-C[x])KClr{y}(-C[x]), we have that D’D. Thus, since D’

is open, we only need to show that AD’.

Case I] Suppose (z,z)A with zClr{y}. Since (X,r) is p-regular,

yClr{z and since (x,y)C implies that yC[x], then zC[x]. Thus,

(z,z)C-{ Clr{y} (-C[x]) }=D’.
Case 2] Suppose (z,z) with zClr{y}. Then (z,z)D’and hence, D’.

Clearly, B[x]r, YBB and Brr which implies that the topology

on generated by is contained in r. Conversely, let xWr. Choose

a cover of by T-open neighborhQods {Vy y} such that Vx=W and

xX-V for yClr{x} and Vy=V if yClr{x} (or equivalently, xClr{y}).
Let S=yVyVy. Clearly, =S and S is open in . Also,

S[x]--q3xvyVy=Vx. Hence, xS[x]=Vx=W. Therefore, W is open in the

topology on generated by . Thus, r is contained in the topology on

X generated by

Although we used neighborhoods "of A in the product topology in

the proof above, we could have used neighborhoods of A in (r

discrete) (discrete r) which would give us a finer point

semiuniformity inducing the same topology..

Theorem 4 proves that t. semiuniformizable and point

semiuniformizable are equivalent notions for a topological space;



CHARACTERIZATION OF POINT SEMIUNIFORMITIES 315

however, this is their only similarity. From the examples we note
that vicinities in a t.semiuniform base are constructed simply by
forming "crosses" along the diagonal; whereas, in a point semiuniform
base vicinities are more carefully constructed possessing "crosses" at
each point.

PROPOSITION 5. Let {U=}=A be a collection of point
semiuniformities for . Let B be the collection of all finite
intersections of elements of U=AU. B is a base for a point
semiuniformity which is the join of the family {U}A.

Let {V}=A be a family of point semiuniformities for the set .
Let be the family of all point semiuniformities coarser than each

V, A. e is a nonempty collection since {} is a point
semiuniformity coarser than each V, A. Then the meet of the family

{V}A is VuU.
Thus, if we let be a fixed set and we consider the collection

of point semiuniformities for , then this collection forms a complete
lattice when ordered by set inclusion.

THEOREM 6. If is a finite base for a point semiuniformity then

B is a base for a uniformity.

PROOF. Let BB. Since B is a base for a point semiuniformity,
then there exists CB such that for each (x,y)C there exists D(x,y)B
with D(x,y)o(x,y)B. Now, since is a finite base, then the set S

{ D(,y) (x,y)C and D(,)o(x,y)B } is finite. Thus, there exists

E with E(S)C. Let (s,t)EoE. Then there exists w such that

(s,w)E and (w,t)E. Since E(nS)nC, which implies that (s,w)C, then

(w,t)D(s,w). Therefore, (s,t)=(w,t)o(s,w)Dcs,wo(s,w)B. ,

COROLLARY 7. On a finite set, point semiuniformities and

uniformities coincide.

. Semicontinuous Groups

It is well known that group topologies on a group are

characterized by fundamental systems and fundamental systems give rise

to left and right uniformities which give the same topology. A

semifundamental system S for a group is a collection of subsets of

each containing the identity and satisfying the following properties:

I) If U,V$ then 3W$ such that WUV

2) If US and aU then 3V$ such that Va=U
3) If U$ then 3V$ such that V-*U
4) If UeS and x then 3V$ such that xVx-U.

E. Clay [3] showed that every semicontinuous group has a

semifundamental system. Let U be an element of a semifundamental

system for a semicontinuous group. Since inversion is continuous, we
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can always find a symmetric V such that V_cU by letting V=UnU-I.
Consequently, we can always assume that our semifundamental system is

a symmetric semifundamental system. The next theorem shows that every
semicontinuous group is point semiuniformizable.

THEOREM 8. Let $ be a symmetric semifundamental system for a

semicontinuous group (,r). Define Lu= {(x,y) xyU [Ru= {(x,y)
xUy }] Then L={Lu US [R={RU US }] is a base for a point

semiuniformity which induces the original topology r. The point

semiuniformity generated by L [R] is called the left [right] point
semiuniformity of (@,r) and is the unique point semiuniformity for

that generates r and has a base of left [right] invariant sets.

PROOF. Clearly, L is a filter base that satisfies the first two

properties of a base for a point semiuniformity.
Let Lull and (x,y) Lu Then y-lxU. By definition of

semifundamental system, we can find We$ such that Wy-lx-cU. Let

(x,z)Lwo(X,y) Then (y,z)Lw which implies that z-lyW. Therefore,
z’-*yy-xWy-*x-cU. Thus, z-xU or equivalently, (x,z)LU.

Let LueL and (x,y) LU Then y-lxU. By definition of

semifundamental system, we can find W$ such that Wy-x_cU. Also,
there exists V$ such that y-lxV(y-x)-_cW. So then y-lxV-cWy-x_cU.
Let (z,y)(x,y) oLv. Then (z,x)L which implies that x-*zV.
Therefore, y-lxx-zy-*xV_cU. Thus, y-*zU, or equivalently, (z,y)Lu.

To show that this left point semiuniformity generates the

topology r, let US and xe. Then Lu[x {yl(x,y)Lu} {ylxyU}
{ylyxU} xU.m

THEOREM 9. Suppose that $ is a semifundamental system for a

group (,-,r) If the left or right point semiuniformity is a

uniformity, then S is a fundamental system.

PROOF. Assuming that $ generates a base for the left uniformity

L, then picking US implies that Lull and so, by definition of L, 3V$

such that LvoLv-CLu. If xV.V then x=a-b where aeV and bV. Clearly,

xa-V and ae-V=V. Therefore, (x,a)L and (a,e)Lv. Combining the

above yields (x, e) LoL-CLu. Thus, xe-U=U.m
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