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(). INTRODUCTION

A semiring S is defined as an algebraic system (S,+,.) such that (S,+) and (S,-) are semigroups,

connected by a(b + c) ab + ac and (b + c)a ba + ca for all a, b, c e S. An (absorbing) zero element of

a semiring S is an element 0 such that 0 + x x + 0 x and 0x x0 0 for all x e S. For the rest of the

paper we assume that a semiring is additively commutative and has a zero element. If moreover a semiring

S is additively cancellative, then it is called a halfring. A semifield is a semiring in which non-zero elements

form a group under multiplication.

We know that the ring Mn(R) of n x n matrices over a ring R is (left) artinian iff R is (left) artinian.

But examples show that there are (left) artinian semirings (even semifields) S for which Mn(S) is not (left)

artinian.

In this paper we characterize the class of semirings S such that all Mn(S) are (left) k-artinian (cf.

Definition 1.1). Another characterization of the class of semirings S for which all Mn(S) are (left) h-artinian

is obtained.

We also obtain an analogue of the Hilbert basis theorem for semirings which generalizes a result of

H. E. Stone [1].

1. CHAIN CONDITIONS ON MATRIX SEMIRINGS

Let S be a semiring. A subsemiring of S is said to be a left ideal of S if ra for all S and

a I. A left k-ideal [left h-ideal] is a left ideal of S for which x S [x, z e S], a, b and x + a b

[x+a+z=b+z]implyx [2].
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DEFINITION 1.1 A semnng S s sad to be (left) artinian Ik-artinian, h-artinianl if S sausfies

the descending chain condition on left deals [k-ideals, h-Ideals] of S.

Obviously, aruman mplies k-artman and the latter mplies h-artinian.

A (lefl semimodule M over a semnng S s a commutauve additive semgroup which has a zero

clement, together wth a mapping from S x M into M (sending (r,m) to rm) such that

() (r+s) m=rm+sm, (ii) r(m+p)=rm+rp,

() (sm) (rs) m, (iv) Om r(} 0

lot all m, p M and r, S [3]. We define k-subsemimodules and h-subsernimodules of an S-semi-

module and k-arttnian and h-artinian semimodule over a semiring S in a similar fashion.

Let S be a semzring with a multiplicative identity and Mn(S) be the semiring of n x n matrices over

S. Let E, be the matrix in Mn(S) such that its (i,j)th. entry is and .all other entries are zero. Henceforth

for any matrix A (aij) Mn(S) and 1,2 n, we introduce

Ai EiiA ajEij.
J=l

Then A can be written as A1 + A2 + + An. The ith. row matrix (all ai2 ain) of A will be denoted

by a,, 1,2 n. Let be any left ideal of Mn(S). We define for each 1, 2 n, I0i {Ai A I}

and I, {a,: A (aj) I}. Now I0
_

I, as is a left ideal of Mn(S). Theretbre I01 I02 I0n,

where means the internal direct sum (as in the case of a ring).

Nowwe verify that I1 =I2 ...... In=M (say).Leti and a Ij. Let A be any matrix

corresponding to a. Now Eij A and the ith. row matrix of EijA is a. Thus a I,. This

mples Ij
_

I, for any :j. This completes the verification.

Straightforward calculations show If is a left k-ideal h- ideal of Mn(S), the same holds for

all I0, and M is a k- subsemimodule h-subsemimodule of the S-semimodule Sn considering

elements of Sn as row matrices ).

Conversely, let M be a subsemimodule k-subsemimodule, h- subsemimodule of the S-semi-

module Sn and M01 + M02 + + M0n, where M0i { aij Eij Mn(S) ai all, ai2 am ) M }.
J=l

Clearly, is closed under addition. Let A I, C Mn(S). We have

CA=(CI+C2+...+Cn)(AI+A2+...+An)= CiAj.
1=1 J=l

Now CiAj is amatrixin Mn(S) whose all rows are zero except the ith. row, which is

cj ajl cijaj2 cijain cijaj M, as M is a subsemimodule of Sn. Thus CiAj M0i and hence

CA I. Therefore is a left ideal of Mn(S). Also it is trivial to show that is a left k-ideal h-ideal

of Mn(S) if M is a k- subsemimodule h-subsemimodule of Sn. Thus we have proved the following

lemma.

LEMMA 1.2. Let S be a semiring with a multiplicative identi. 1. Then is a left ideal [ k-ideal,

h-ideal ] of Mn(S) iff there exists a subsemimodule [ k-subsemimodule, h-subsemimodule ] M of the

S-semimodule Sn such that M01 M02 ... M0n, where Moi is defined as above.
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COROLLARY 3 Let S be a .emtrtng with multqdtcattve identity, 1. Then Mn(S) ts arunian

[k-arttntan, h-arttnian tO’ Sn ts an artintan k-arttntan, h-artintan S-semimodule.

EXAMPLE 1.4. Let S bc the set ol all sequences of positive rauonals and the constant sequence. I). L.. wth pontwsc addition and muluplcatlon. Clearly S s a commutative semflcld and hence

artnan Now let

S2Mr={(x,y) "x=(xl. x2... ),Y=(Yl, Y2 ),x=y,l< < r}.

Then M1 M2 M3 . s an lnfimtc descending chain of k- subsemimodules of the S-semi-

module S2. Thus M2(S) is not k- arunan, which ymlds the same lbr all Mn(S), n _> 2.

Now wc present another charactenzauon of semmngs over whmh semirings of matrices are h-artiman. It

s ca.,;mr to handle and t shows that actu’,dly the descending chain condition on h-deals of Mn(S) n > over a

scmnng S does not depend on n (el\ Corollary 1.11). We proceed through some preliminary lemmata.

LEMMA 1.5. Let S be a semiring. Then every homomorphic image ofa k-artinian S-semirru)dule

is also k-artinian.

PROOF. Let M be an S-semmodule and q: M-, N be a homomorphism of M onto an

S-semmodule N. It is well known that W
-1 (K) is a k-subsemlmodule of M for each k-subsemimodule

K of N. This yields the assertion as in the corresponding proof in the case of nngs

Let H be a halfrmg. We recall that H can be embedded nto a nng and that the smallest ring of thin

kind s umquely determined (upto isomorphism). Snce the latter consists of ’all differences a b for a, b H,

it is called the difference ring of H and is denoted by D(H) [4].

LEMMA 1.6. If M is an H-semimodule for a halfring H such that M, + is a group, then M

is also a D(H)-module under the definition 2 m rlm r2m for all ri H and m M. Moreover

any k-subsernimodule of M is a submodule of the D(H)-module M and conversely.

PROOF. One can easily check that 2 m is well defined and satisfies (i) to (iv) of the definition

of semimodules. Let K be a k- subsemimodule of M and ml,m2 K. Then m m2 + m2 m

implies m1-m2 K. For m K and r=r1-r2 D(H), from (rlm-r2m)+r2m=rlm, we get

rm rlm r2m K. Thus K is a submodule of the D(H)-module M.

Conversely, let K be a submodule of the D(H)-module M. Clearly K is also a subsemimodule of

theH-semimodule M. Also if u+ml=m2 for some u M, ml,m2 K, then u=m2-ml K.

Thus K is a k-subsemimodule of M, as required

LEMMA 1.7. Let H be a halfring. If Hn is a k-artinian H-semimodule (n > ), then D(H) is

an artinian ring.

PROOF. We define a mapping W Hn D(H) by

al a2 + a3 + an, when n is even

W ((al, a2 an))

a a2 + a3 an, when n is odd.

Clearly W is a well defined (H-) semimodule homomorphism of Hn into D(H). We show that

W is alsosurjectve. Let x D(H). Then there are x’, x" H such that x x’- x". Thus
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W (x ’,x ",{1,{1 {})) x. Therefore D(H) is a k-arunan H-scmmoduic by Lcmma 1.5, which mplcs

D(H) s an amnian D(H)-modulc by Lcmma 1.6. Hence D(H) is an amnian nng u

It .s well known that the left k-ideals of a halfrn H are precisely the ntersecuon w,th H 1 the

left dcals of D(H) I11 From this fact it is obvious that if D(H) s artiman then H s k- arunan But the

converse s not true. For example, let us consider the scmificld S described n the Example 1.4. S s an

artnan halfnng but D(S), being the countably infinite copes of all rationals, is not artnan.

LEMMA 1.8. Let H be a hal.tiig. If D(H) is artinian, then Mn(H) is k-artinian n >_ ).

PROOF. If D(H) s arunlan, then so is Mn(D(H)). Moreover D(Mn(H)) Mn(D(H)) 151. Hence

Mn(H) IS k-aruntan U

The following theorem follows from Corollary 1.3, Lemma 1.7 and Lemma 1.8.

THEOREM 1.9. Let H be a halfring with multiplicative identi. 1. Then the following three

statements are equtvalent.#)r n >

(i) M,(H) ts a k-artinian halfring.

(ii) Hn is k-artinian H-semirmdule.

(iii) D(H) is an artinian ring.

Let S beasemiring. Weknowthat ,s ={ (x,y) Sx S’x+z=y+z for some zS is the

least addtvely cancellative congruence on S and hence S/As is a halfring. Generalizing this concept,

D(S/As is also called the difference ring of the semiring S and denoted by S. We denote the s-class
of any element a S by [a]. Now straightforward calculations show that Mn(S/As is isomorphic to

Mn(S)/AM n(S) through a semiring isomorphism which sends the matrix aij in Mn (S/As) to the

element aij in Mn (S) /AM n(S) Also routine computations prove the following

LEMMA 1.10. Let S be a semiring. Let H be a left h-ideal of S. Then H’ [x] S/As x H

is a left k-ideal of S/As. Conversely, if K is a left k-ideal of SlY, then Ko x S Ix] K is a

left h-ideal of S. Moreover, one has’ (H’)o H and (Ko)’ K andhence a bijective correspondence between

the sets’ ofall left h-ideals’ of S and all left k-ideals’ of S/As. In particular S is h-artinian iff S is k-artinian.

COROLLARY 1.11. Let S be a semiring with multiplicative identity 1. Then the following three

statements are equivalent n >

(i) Mn(S) is an h-artinian semiring.

(ii) Sn is ,n h-artinian S-semimodule.

(iii) S is an artinian ring.

PROOF. (it => (ii) follows from Corollary 1.3.

(i) :> (iii)

Mn(S) is h-artinian

:> Mn(S)/-Mn(S) is k-artinian (by Lemma 1.10)

:> Mn(S/As is k-artinian (by the above isomorphism)

::, S D(S/As is artinian (by Theorem 1.9)
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2. HILBERT BASIS THEOREM

DEFINITION 2 A semrng S s called (ie.lt) noetherlan k- noetherian, h-noethertan if t

satisfies the ascending chain c()ndton on left dcals k-dcals, h-dcals of S.

It s clear that every k-nocthenan semnng s h-nocthcnan. But the following example shows that the

converse s not true.

+ +EXAMPLE 2.2. Let Zo be the set of non-negative integers. Then Z
0

max., min. is an

h-nocthcran scmnng, but not k-nocthcnan.

Let S be a semrng and A
_

S. The smallest left h-ideal of S containing A s called the left

h-deal of S generated by A. The following lemma s obvious

LEMMA2.3. Let A ae S l. 2 n and

(A)h {xe S’x+c,a,+n,a,+r- ,a+ia,+r, for some c,, ci re S and n,,,e Z’.
=1 =! =1 =1

i=1.2

Then (A)h is the left h-ideal of S generated by A.

One can easily prove the following statements

THEOREM 2.4. The following three conditions on left h-ideals ofa semiring S are equivalent

(i) S is h-noetherian.

(ii) Every non-erupt, set of left h-ideals of S has a maximal element.

(rio Every left h-ideal of S is finitely generated, i.e., for any left h-ideal of S, there is afinite
set A

_
such that (A)h.

LEMMA 2.5. Any homomorphic image ofan h-noetherian semiring is h- noetherian.

A halfring H is called unital [1] if D(H) is a ring with identity. Stone [1] has obtained the

following analogue of the Hilbert basis theorem for halfrings

Let H be a unital halfring. Then H[x] is k-noetherian iff D(H) is noetherian.

We first show that the condition "unital" is not essential.

THEOREM 2.6. Let H be a halfring. Then H[x] is k-noetherian iff D(H) is noetherian.

PROOF. Let D(H) be noetherian. Then H[x] is k-noetherian [1].

Conversely, let H[x] be k-noetherian. We define a mapping W" H[x] D(H) by W (p(x))=

P0- Pl + P2 P3 + for each p(x) P0 + Plx + P2x2 + P3x3 + + Pnxn" Clearly, W is a well- defined

semiring-homomorphism. Also let u D(H). Then u a b, a, b H. Now W a + bx u. Thus

W is surjective and hence D(H) is noetherian m

EXAMPLE 2.7. [1] Let S be the halfring described in the Example 1.4. Then S is k-noetherian.

But D(S) is not noetherian.

To prove the main result of this section we note that there is a semiring-isomorphism q on (S/ )[x]

onto (S[x])/S[x] defined by
n

W [P0 + [Pl]x + [P2]x2 +"" + [Pn]xn) P0 + Plx + P2x2 + + Pnx
THEOREM 2.8. Let S be a semiring. Then S[x] is h-noetherian iff S is noetherian.

PROOF. Six] is h-noetherian.
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(Slx])/ASlxl is k-nocthcnan (by Lemma 1.1())

(S/ASIxl)lxl is k-noetherian (by the above said somorphism)

<= S D(S/As is noetherian (by Theorem 2.6) I
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