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ABSTRACT. In this paper, we investigated the minimax of the bifunction

J: H'(Q)xv, » R™R",
such that
Jvpvy) = (Gaev,v) - L)Yy
where
a (,,.) is a finite symmetric bilinear bicontinuous, coercive form on H'(Q) and L belongs to the
dual of H'(Q).
In order to obtain the minimax point we use lagrangian functional.
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1. INTRODUCTION.

The minimization of functonals defined only on one Hilbert space has been studied by Jean
Cea[l], and the saddle functions has been introduced and investigated by Rockafellar [2]. Our
aim, is to generalize the above work in order to obtain a general minimax of functionals defined on
two Hilbert spaces. We consider the Sobolev space n' () with inner-product,

((u, v)) = [ {uv + 3 (Du)(D¥)}dx,
Q J=1
as a Hilbert space.
The Green's formula will be used to obtain a minimal solution in this work.

2. PRIMILARIES
Let Q be a bounded open subset in R" and I' denote its boundary. The Sobolev space HI(Q)
can be defined as follows, [1):
H'(Q) - {v:v e L'(Q), ovjox, « L'Q),J=1,2,...,n}
where D‘v =0v/ox g are taken in the sense of distributions i.e.
<D,v,¢p>.—.— <v,D,q)> for all ¢ € D(Q)

are D(Q) denotes the space of all C”-functions with compact support in Q, Also <, >
denotes the duality between D(Q) and the space of distribution D'(Q) on Q. The space HI(Q)
is provided with the inner-product.
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’ = ’ ' D vD
((u,v)) = (u v)l',m)+§( PN

= j{uv + Z.:(D’u)(D’v)}dx.
Q =1

The vector ¢ € V, @ # 0 is called a direction in V.

If T is' regular" (for instance, [' isa c' (or C‘)-manil‘old of dimension n-1) then the
linear mapping v ->v of C'(Q)->C'(I') (resp. of C*(0)-> C*(I') extends to a continuous
linear map of li'(Q) into LZ(I’) denoted by y and for v eHl(Q), 7 (v) is called the trace of v
on T.

A linear tranformation L:v — L(v) is continuous if there exists a constant N such that
L(v) < Njv|y for veV.
A Dbilinear function a(u,v):VxV Rm, is bicontinuous if there exists a constant M>0 such
that
a(u,v) <Mlujyfvly forall u, veV.
A biliniear function a( u, v) is V-coercive if there exists a constant a >0 such that
a(u,v)?uuvnzv forall veV.

Let E be a vector space, a cone with vertexat o in E is asubset A of E such that, if A
belongs to A and if o belongsto R with a >0 then aX also belongs to A.

In the following we have collected the I.emmas and Theorems we needed to obtain our main
results. It should be noted that these are based on [1] except corollary (4) on [2].

1. LEMMA. The following equality
n
Du,Dy) ., =-|(Auwyvdx+ | Mydo )
Z—} | 1"l £ rar_:

where .
(D’u,D’v) , is the inner product defined in Lz(Q) is true.
L@

PROOF. Ifu, v € CI(Q), and by using Green's formula [3], we get
J(D,u)vdx: —Ju(D‘v)dx»} Ju v njdc ?)
a Q r

where do is the area elementon I'.
We define the operator of exterior normal derivation formally as

n
0 _
on Zn‘(x)D’,
n =
such that n(x) is the unique outer normal vector at each pointxon I', and (n,(x),...,n,(x)) are

the direction cosines of n(x).
Next, if u,ve Cz(_ﬁ), then applying the above formula to Dju, Djv becomes

J(l):u)vdx = —J(l)‘u)(D’v)dn» J(l)‘u) v n’do
Q Q r

and
z.:j(D’u)(D‘v)dx = —Z.:j(D:u)vdl+ ZJ(D’u)v n’do.
Fia Fila Fir
Then
n n 2 au .
Du,Dyv =- Mu)vdx+ | = vdo
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L]
Du,Dyv) = - | (Au)vdx + Ny s

2. LEMMA. LetV be a Hilbert space, V' be its strong dual, and J:V 5 R be a functional such
that

J(v) = %a(v,v)— L(v)
where a(,) is a symmetric bilinear, bicontinuous, coercive form on V and Le V'. Further, let K

be a closed convex subset of V then for all ve K there exist ue K such that
J(u) < J(v)

3. THEOREM. There exists a unique solution u €K  which minimizes J on K, and this

problem is equivalent to the following variational problem: Find u €K such that
a(u,v-u)>L(v-u)

4. COROLLARY. Let C and D be non-empty closed convex sets in R"™ and R', respectively, and
let K be any finite continuous concave-convex function on C x D.
Let K and K be the lower and upper simple extensions of K to R™ x R.. respectively.
Then K islower closed, K is upper closed, and there exists a unique closed convex bifunction
from R" to R" such that
l_((u,x.) =< Fu, x >, i(u.x.) =<u, F.x. >.

The bifunctions F and F are expressed in terms of K by

sup{< x,x. > —K(u,x.); x. eD} ifueC,
(Fu)(x) =
-+ 00 “.UQC,
“ e e inf{<u,u‘>-K(u,x.);ueC} if x'eD,
(Fx)(u)= .
— w0 ifx ¢D.

In particular, dom F=C and dom F*=D.

5. THEOREM. (Ky Fan and Sion)
Let V and E be two HausdorfT topological vector spaces, U be a convex compact subset of
V and A be aconvex compact subset of E. Suppose

&:UxA-> R

be a functional such that
i) for every v e U the functional

LV, YR LE, )

is upper-semi-continuous and concave,
i) for every p € A the functional
J(" u) : V—)J(V, P')

is lower-semi-continuous and convex. Then there exists a saddle point (u, 1) e UxA for /.
3. MAIN RESULTS.
6. THEOREM. Let Q be a bounded open set in R" with smooth boundaryI'. Let V, and V,
be two Hilbert spaces, Vl = HI(Q), and V; , V; be two ( strongly) duals. If the bifunction
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JV,xV,5>R" xR’
is defined by

Iv,,v)= ((»%a(vl, v.)~L(v))v,)
where a(, ) is afinitc symmetric bilinear, bicontinuous, coercive form on vV, L eV;, and K,
is the following subset:

K, ={v;v, eh'(()), “1 vlu‘}m <L y(v,) Is atrace}.

Then there exist a minimax of J.

PROOF. We first prove that K is a closed convex set. To show that it is closed, we suppose
(v:) €K, is a sequence such that (v:) - v, in V, andsince
y:H'(Q) » L)
is a continuous linear map. Then
YOV >y (v) in LY(D).
1f q:eLz(I‘) issuchthat ¢ >0 on I, then

[lrevpakio = fim |
r nyoy

N i
< _Im(”y(v:)l do) (J |¢|zd0) ,
T T

Yol

we choose o] 2 = such that

lim l
nyo

From which we deduce that "7("1)".}(1-, <L

Y (V: )“LI(I') n‘l"L,‘(r) <1 for (V:) ekK.

Also, to show that Kl is convex, let v, and v, be two elements in K,, i.e.

"y(vl)" <1 and "7("1)“ <L
l.z(r) l.z(r)

Let A be a number such that 0 <A < 1. Now Avl +(1- 3\)v2 € Kl; vy is a continuous linear map,
therefore

v, ra-2vpl - shvopsa-arep] sprop] +fa-rvey)
i) L’ Lim R

siprevy] -4(1—x)!|v('v,)||2 <A+(1-2)=1.
LD 20

Now consider f eLz(I'), then the problem of minimizing J where
I,V = (GO, (), 1V,
on the closed convex set K is equivalent to finding u e K, satisfying the inequality

(a(u,v - u),v,)=((u,v - u)y ,v,)

2((f,vl—u)L2(r),vz] VVIGKI

where v -u), 6 = L(vl— u).
L'
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Therefore, assuming the solution u ( which exists and unique by Theorem 3) is sufTiciently
regular, we can interpret u as follows:

By Green's formula (1), we have

j(—Au+ u-f)(v, - u)dx+ g‘-’d(vl— u)do 20, Vv ekK,.
) T

Q,T are subsets of R".
If @ €D(Q) then the boundary integral vanishes for v =ut ¢ which belongs to K, and

Jeduru-typdxz0
Q

which implies that —Au+u-f>0 in Q.
Next since v =2u and v = %u are both belong to K, we have

U ydo =
on udo =0
which implies that g%u =0 onT.
Thus the minimal of J is equivalent to the solution of the following problem
-Aut+u-f>0 in Q,
Quy-g onl,
6!]_ (])
Ny onl,
on
ux0 onTl,

One can also deduce from (I) that on the subset of 1" where u >0, u satisfies the homogeneous
Neumann condition —g—:" =0.

From the Corollary—4, and since K, is a nonempty closed convex set in V,, we then have

max{J(v,,v,); v,€K,} ifv eK,
J(v,u,)= V2
+ @ irv ¢K,

i.e.,
; n:ax{((%a(vl,v‘)—L(vl)),vz); v,eK,} il'vleKl,
(vpuy)={ "2
+o0 if Vl GKI

7. THEOREM. Suppose the functional

JH'(@Q)>R
is given by

J(v) = —zl-a(v,v)—— L(v)
and the closed convexset K of V= Hl(Q) is given by

K= {v;v el]l(Q), 1-- grad2 v(x)>0a.e. in Q}
where

1- grad u(x) e L'(Q) and (L'(Q)) = L7(Q).

Then the lagrangian
SVUEIvH <p, v>

Lyl @
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.associated to the primal problem ( finding ueK suchthat J(u)<J(v),V veK), hasa
minimax point ( saddle point).

PROOF. Let ¢>0 be any real number. We consider the subsets K ¢ and A ¢ of HI(Q) and A

respectively are defined by
Kl ={v;v elll(Q),OS 1- grad2 v(x)<¢ a.e. in Q}

Alz{p.; peLc(Q), 0<pu<?é¢ in 0}

such that A, being the cone in infinite dimensional Banach space.

4

Frist, we show that K, and A , are convex sets in Q.

14 !

Let Vi, vzeK[ i.e.,

12
dx</ ae in Q,

”l - grad 2vl(x)
Q

and

Jll— gradzvz(x)ldx < l’m ae in Q.
o

Let 0<A<1 wehave
jll- grad” (Av () 4+ (1- k)vz(x))‘dx = jln -2 grad'v, (x) - (1- l)gndzvz(x)ldx
Q Q

= ”2.(1— gradzvl(x))+ (1-2)(1- gradzvz(x))ldx
Q

g

[¢]

Adl- gmd’v,(x))'dx + ”(1 -2\~ gnd’vz(x))’dx
Q

57&~/Z+(1—A)JZ=\/Z ae in Q.

and hence is a convex set.
Now let p,p €A, ie, Sup lp,llsf in Q and Supluzlsf inQ,for 0<A<1 weget

Supl)\.pl +(1- l.)p.zls Sup(llpl|+ l(l— A.)p.I‘) inQ

< Sup|ap |+ Supl(1- Mp (<A £+ (A-2)f = inQ

Thus A ¢ isaconvexsetin Q. And A ¢ is compact in the dual weak topology of r Q).

Since K ) is a closed bounded set in the lilbert space H'(Q), K

consider Hl(Q) with its weak topology.

¢ is weakly compact. We

Now Hl( Q) =V with the weak topology is a Hausdorff topological vector space.
All the hypothesis of the theorem of Ky Fan and Sion are satisfied by K o A ¢ and _/ in view
of (1) and (ii). Hence
&K ¢ A Fins R
has a saddle point ( ul,kt,), i.e., there exist (ul,x[) er X Ag such that

J(Ilt)+<|,l, SJ(ul)+<A.

et >L"(c)x1.'(u)
V(v,p) eK[xAl.

u,>
7y @

b <J(v)+ <Al,v>

A\
L" @@=t
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We shall show that if we choose ¢ > 0 sufficiently large then such a saddle point can be obtained
independent of /£.
For this we shall first prove

‘u [‘L , and A ’ are bounded by constants independent of £.
1 (Q)
Ifwetake p=0¢ A[ in (II) we get

J(u ) <J(v)+ <A ,,v> , V vekK 3
([) v) Y = il ¢ &)}

taking v=0€K£,mK such that

1- gradzv(x) 20 ae. inQ

we get

J(u,)<J(0) for 1- grad V(x)>0 ae inQ.
On the other hand, since a(ul,u[) >0 and since u, € K[

Leu,) <Ll “1 ~ grad ’v(x)|L, <L, ae inQ

Q)

and hence

J(“z)z%a(“z'“:)“ L(ut)z-["L]L. ae inQ
Thus we have

~LL, < J(u,)< J(0) ae. inQ (@@

Now by coercivity of a (., .) and (4) we find
2
all[ u, HI sa(ul,u[)z- 2(J(u[) rl,(ué,))SZ(J(O)+|[LHv. Hl u, Hl) ae inQ

with a constant o >0 ( independent of ¢)and ||| | defined the norm H-IL.'(oy

By using the inequality

[l dl w, Hsell up (F+ 2Ll foranys >0
with s=a /4 >0, weoptain

2

ofl u, [fs23000+ ] w, [+ 21Uk,

Therefore,
2

I, <3 @@+ Sk

This proves that there exists a constant C, > 0 such that

[H u, I“ISCl v/, a.e iQ. ®)

We observe that since J satisfies all assumptions of Theorem (3), there will exists a unique global
minimum in V= HI(Q) i.e., there exists a unique i € Ill(Q) such that

J(O) < J(v), Vv veV ©)
But, if we take v=1cK ¢ in the inequality (3) we get

J(ue) + sup l.e < J(1).

The last two inequalities imply that

C,=-J(li)+ J(1) 2 sup A (@)

eZO

is also bounded, ¢ may be taken as follows
> max(C,,2C,)> 0 ®)
Next we show that (II) holds for any p € A For this we write the frist inequality of (II) in the

which proves that A ¢

form
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<H,u,> <<A
g L (Q)xLl(D) [ g L (Q)xL(D)
which implies that
i) taking p =0 we have <x€,u£> >0, and
Lo
i) taking p =22 ,<2C, </ wehave <A <0.
¢ et L@@
Thus
=0 and <y,u <0, V peA
e [ L (O)XI (O) [ L (Q)XL(Q) Z
In particular, p=f €A, andso <f,u > _ , <0 which means that
4 4 L (xL (Q)
<H, - , S0 forany p>0,
4 L (Q)xL (Q)
and therefore
~,[;(ug,p.)s..[;(up,7a[)s,[;(v, 7«.(,) V u=20 and v GK(’ (&)

where />max(C ,2C2).

We have now only to show that the inequality (9) holds for any v € III(Q) =V.

For this, we note that 'H u ) l“ls C, <f ae. in Q, and hence we can find an r >0 such

that the ball

B(ug,r)z fvive HI(Q):1~ gradz(v(x)- u, (x))<r a.e.in Q}

4
is contained in the ball

B(ug,r) ={v;ve Hl(Q): 1- gradzv(x) <?¢ a.e.in Q}
In fact, it is enough to take 0 <r <(£-C,)/2. Now the functional
Lo Az): v > h(y, AZ)
SV A )=I(V)E <A, v> .
e e L (Q)xL ()
has a local minimum in B(u g,r). But since this functional is convex such a minimum is also a

global minimum. This means that

inf LV, A )=inl [[(v,4,).

veB{ul.r)

On the other hand, since B(u Z,r) < K ,, we see from (9) that

14
L, 1w LU, A ) <inf L(v, A )< inf ~[;(v A ) mf,[;(v A )
14 07877 vek, 14

ch(u \r)

In other words, we have
J(“g’”)s*ﬁ(ug';‘g) LWL, ke), VveV, and Vp20,

which means that _/, has a saddle point.
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