
Internat. J. Hath. & Hath. Sci.
VOL. 19 NO. 3 (1996) 521-528

521

ON MINIMAX THEORY IN TWO HILBERT SPACES

E. M. EL-KHOLY HANAN ALl ABDOU

Faculty of Science
Department of Mathematics
Tanta University
Tanta Egypt

Faculty of Education
Department of Mathematics
Ain Shams University
Cairo Egypt

(Received February I, 1994 and in revised form April 19, 1995)

ABSTRAC’[’. In this paper, we investigated the minimax of the bifunction

J: l-l’(f2)xVz xR’,
such that

J(v,,v) ((-a(v,,v,)- I,(v,)),v)
where

Ha (.,.) is a finite symmetric bilinear bicontinuous, coercive form on (f2) and L belongs to the

dual of HI(CJ).
In order to obtain the mlnlmax polnt we use lagrangian functlonal.
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1. INTRODUCTION.
The minimization of functonais defined only on one tlllbert space has been studied by Jean

Cea[l], and the saddle functions has been introduced and investigated by Rockafellar [2]. Our

aim, is to generalize the above work in order to obtain a general minimax of functionals defined on

two Hilbert spaces. We consider the Sobolev space tl (t) with inner-product’

((u, v))= J {uv +
U J=l

as a Hllbert space.

The Green’s formula will be used to obtain a minimal solution in this work

2. PRIMILARIES

Let C be a bounded open subset in R" and F denote IL boundary. The Sobolev space H ()
can be defined as follows, [1]:

lI’(t2) {v’v ( LZ(k"2), Ov/cgxj ( Lz(2), J 1,2 n}

where Djv Ov 0x| are taken in the sense of distributions i.e.

< Djv, p >- < v, Djcp > for all p D(fi)

are D() denotes the space ofall C’-functions with compact support in fi, Also <, >

denotes the duality between D() and the space of distribution D’() on t. The space H (fi)

is provided with the inner-product.



522 E. M. EL-KHOLY AND H. ALI ABDOU

((u, v)) (u, v)l z(12
-t t (Dju’Djv)t z(13)V-!

J {uv s t (Dju)(D]v)}dx.

The vector p c- V, q 0 is called a direction in V.

CIf V i regular"( for instance, I" is a (or C )-manifold of dimension n-l)lhen the

linear mapping v v of C() (I’) (resp. of C ()C (I’) eendtoacontineou

Hlinear map of lt() into L(V) denoted by and for v (), (v) is called the tce ofv

on I’.
A linear tnformation I,: v L(v) is continuous if ere exists a constant N such that

 Uvllv v v.
A bilinear function a(u, v): V x V is bicontlnuous if there exls a co.rant M such

that

u. v) <_ MII IIv IIv ,u ,. v v.
A bilinlear function a( u, v) is V-coercive if there exisL a constant a >0 such that

V.

t E be a vector space, a cone with veex at o in E is a subset A of E such thaK if

iongs to A and if belongsto R with 0 then X also.longs to A.
In the following we have collected the I,emmas and Theorems we needed to obln our main

result. It should be noted that these are bed on [1] except corolla (4) on [2].

1. LEMMA. The following equality

t )t.(m o r
where

PROOF.

is the inner product defined in L2(CJ) is true.(Dju, Djv)Lz(m
If u, v (C2), and by using Green’s formula [3], we get

J(Dju )vdx I u(Djv )dx-, Juv njdo

where do is the area element on F.

(1)

(2)

and

’(Dlu)(Dv)dx -J(Du)vdz + tJ(Dlu)v nldo.
Then

Dlv)m Ou(D,u.
I=.

(l’:u)vdx/12 r-vd_

the direction cosines of n(x).

Nelt, if u, v C2(), then applying the above formula to Dlu, Dlv becomes

J (1)u)vdx -J (1),u)(Olv)dx + J (I)1.)v

We define the operator of exterior normal derivation formally as

o- )D,
such that n_(x) is the unique outer normal vector at each point x on F, and (n(x) ,n__.(x)) are
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2. LEMMA.
that

Let V be a }lilbert space, V’ be its strong dual, and J: V - R be a functional such

J(v) a(v, v)- L(v)

where at, ) is a symmetric bilinear, bicontinuous, coercive form on V and L V’. Further, let K
be a closed convex subset of V then for all v. K there exist u= K such that

J(u) J(v)

3. THEOREM. There exists a unique solution u cK
problem is equivalent to the following variational

a(u,v- u)_>L(v- u)

which minimizes J on K, and this

problem: Find u K such that

4. COROLLARY. Let C and D be non-empty closed convex sets in R" and Rt, respectively, and

let K be any finite continuous concave-convex function on C x D.
Let K and be the lower and upper simple extensions of K to R x respectively.

Then K_K_ is lower closed, K is upper closed, and there exists a unique closed convex bifunction

from R to R such that

K_K_(u,x):<Fu, >, K(u,z):<u, Fx >.

The bifunctions F and F are expressed in terms of K by

sup{<x, >-K(u,x);I D}
(Fu)(x)

[4- oo

if u C,

if u q C,

{<u, >-K(u, );uC} if D,
(F x )(u )=

ifx D.

In particular, dora F=C and dora F" =D.

5. TttEOREM. (Ky Fan and Sion)
Let V and E be two Hausdorff topological vector spaces, U be a convex compact subset of

V and A be aconvex compact subset of E. Suppose

:UxA- R

be a functional such that

i) for every v U the functional

,.v, .): -,. (v, )

ts upper-semi-continuous and concave,

ii) for every tt A the functional

X., ): v --,;(v, )

is lower-semi-continuous and convex. Then there exists a saddle point (u, X) . UxA for,
3. MAIN RESULTS.

6. TItEOREM. Let f be a bounded open set in R" with smooth boundary F. Let V and V
be two Hilbert spaces, V I-I(), and V, V be two (strongly) duals. If the bifunction
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R RJ: V x V - x

is defined by

J(v,, v)= ((- a(v,, v,)-- L(v)),v)
where a(, is a finite symmetric bilinear, bicontinuous, coercive form on Vi, L Vi, and K

is the following subset:

K {v;v H([), v Zr)_-

Then there exist a minimax of J.

PROOF. We first prove that K! is a closed convex set. To show that it is closed, we suppose

(v)K is a sequence such that (v)-vi in V, and since

7"Hl() - (r)
is a continuous linear map. Then

y(v,)-- (v,) in I(r).
If q)LZ(V) ts such that q)>0 on F, then

for (v,) K.

From which we deduce that I1 ’"
Also, to showthat K is convex, let v and v be two elements in Kl, i.e.

I1 < ,)11 -<’ ""<’ II <v,)ll
l,z(r) LZIri

Let be a number such that 0 _< _< 1. Now .vt -t (1 k)v Kt; / is a continuous linear map,

therefore

-< + I1 ’-
Lilt) Li(r)

Now consider f L(F), then the problem of minimizing J where

J(vi, v l) ((1/2 (vi, v,),,--(r,v,), ), v)
on the closed convex set K is equivalent to finding u K satisfying the inequality

(a(u, vl u), v z) ((u, v l-- u )v v z)

_> {(f,v, U)Lzr),vz) ’v,
where (f, vi u)z(r) I(vt u ).
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Therefore, assuming the solution u (which exists and unique by Theorem 3) is sufficiently

regular, we can interpret u as follows:

By Green’s formula (1), we have

(-Au+u--f)(vl-u)dx/ --(v-u)do_>0, Vv1K1.
f, F are subsets of Rm.

If q D() then the boundary integral vanishes for v u +_ q which belongs to Kl and

(--+u- )(pdx>_Au f 0

which implies that -Au+u-f>0 in .
Next since Vl:2U and vl=u are both belong toK

.Ou udo 0
F

which implies that u--u-- 0 on F.

Thus the minimal of J is equivalent to the solution of the following problem

we have

-Au+u-- f_>0 in

Un-u
0 on

u _> 0 on [’,

u_>0 onF,

One can also deduce from (I) that on the subset of I" where u >0, u satisfies the homogeneous

Neumann condition 0u 0

From the Corollary 4 and since K is a nonempty closed convex set in V, we then have

); vzK if v K
j(vt,uz): "z

+o if vK

7. THEOREM. Suppose the functional

J: Ht(L) R

is given by

J(v) a(v, v)- l.(v)

and the closed convex set K of V=Ht(C)) is given by

where

Then the lagrangian

K {v; v llt(Q),

gradu(x) (L) and ([,(L))’= L’().

,,(v,)=J(v)+ < t, v>
L (1:1) L()
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associated to the primal problem finding

minimax point (saddle point).

u_K such that J(u)<J(v),V vK), hasa

PROOF. .Let >0 be any real number. We consider the subsets K/, and A/, of Hl() and A

respectively are defined by

K Iv; v e lll(fa), 0_< 1- grad
2

v(x)<t a.e. in

A, {; /e (n), 0_<<g in

such that A being the cone in infinite dimensional Banach space.

Frist, we show that K and A are convex sets in .
Let vi, v Kf i.e.,

vt(x) dx<_ ’ a.e. in ,
and

1/2

a.e. in .
Let 0<X<I we have

(x)-(1- X)grad v:z(x) dx

S[J(I- grad lvl( x)) + (1- X)(I-grad iv

_<//(1-)/-- / a.e. In ri.

and hence is a convex set.

Now let t,tlAei.e. Sup,I[t[<- in k"J and Sup[ttl[,,-< in,for 0_<._<1 we get

Thus A is a convex set in . And A is compact in the dual weak toio of ().

Since K is a closed bounded set In the ltilbert space It(), K Is weaycompacL We

consider H () with i weak topology.

Now H() V th the weak topology is a Hausdorff topological vector space.
All the hypothesis of the theorent of Ky Fan and Sion are satisfied by K, A and in view

of (I) and (ii). Hence

:K x At R

has a saddle point (ug,g), i.e., there exist (ug,Rg) eK x Ag such that
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We shall show that If we choose > 0 sulTiclently large then such a saddle point can be obtained

independent of 0.

[ and . are bounded by constants independent of .For this we shall first prove u t
Ifwe take I 0 c A in (ll) we get

J(u/)<J(v)-t <0,v> V vK (3)

taking v 0 K/, g such that

1-- gradv(x) > 0 a.e. in

we get

J(u)_< J(0) for 1- grad 2v(x) >_ 0 a.e. in .
On the other hand, since a(u,u) > 0 and since u/ K

and hence

Thus we have

L(u) [[L]L,]]I grad2v(x)’(o a.e. infi

a.e. infi

(8)

Next we show that (II) holds for any t A For this we write the friar inequality of (II) in the

orm

-elILIL,-< Jcue) -< J<0) in <4)

Now by coercivity of a 6, .) and (4) we find

By using the inequality

liLle, tor any v > 0IILll .lll  lil ue
with =/4 >0, weoptain

8

Therefore,

).

This proves that there es a constant C > 0 such that

III IIl’ c, e, a.e. i. C5)

We obsee that since J satisfies all assumptions of Theorem (3), the will exis a unique global

minimum in V H() i.e., there exis a unique fi ll() such that

J(f) j(v), v v (6)
Bu ifwe take v =1 K in the inequality (3) we get

J(u)-t sup Xf J(l).

The last two inequalities imply that

C J(fi) .Y(1) sup

which proves that X is also bounded, may be taken as follows

> max(C,2Cz) > 0
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< ;,u >L= < < /, uf >
(t’3)x LI() I, (f3)x Ll(t’3)

which implies that
i) taking H =0 we have < 7,,uf >,Y(t), L’(t)

> 0, and

ii) taking tt 2.f _< 2C < we have <

Thus

<,,up> :0 and <t,u> LI
_<0, V pA

In particular, A/ and so < .,u, >.{}L{< 0 which means that

> _<0 for any;t>0,<[t,U L ()xL

and therefore

,.L(ue,tt)_<,.(u/,.) <,.L(v, *) V t _> 0 and v K (9)

where > max(Cl,2C2).
We have now only to show that the inequality (9) holds for any v lll() V.

For this, we note that [1[ u I1_<_ C, <’ a.e. in tg, and hence we can find ant >0 such

that the ball

B(uf,r) {v;v II( ): 1- grad(v(x) u,(x)) < r a.e. in }

is contained in the bali

B(u,r)= {v;v It():l-grad2v(x) < a.e. in

In fact, it is enough to take 0 < r < (- C) 2. Now the functional

L(., ’): v-,L(v, ,)
,,(v, / )=J (v)-t < /, v

LI()()

has a Ioenl minimum in B(u,r). But since this functional is convex such a minimum is also a

global minimum. This means that

vB(u..r)
On the other hand, since B(u/?,r)

_
K, we see from (9) that

,,j(u,,tt)<_(u,,) _< inf ,.(v, )_< inf ,,/(v, /)=inf,,(v, ,).veK vB(u.r) vV

In other words, we have

,.L(u,,p)_<,(u,7) .<_,.i(v, 7), V v V, and /! >- 0,

which means that has a saddle point.
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