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ABSTRACT. In this paper we shall interpret and study tile Pexider functional equations in tim

context of Fuzzy Set Theory. In particular, we shall present a general procedure for obtaining the

fuzzy analog of the Pexider functional equations and then solve the resulting equations.
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1. MOTIVATION.
Tile functional equation

I(pq) I(v + I(q) (1.1)

may be interpreted as giving the amount of information I due to two independent events A and B
with probabilities p and q, respectively. The functional equation (1.1) is one of Cauchy equations,
and has been dealt with extensively (see Aczdl [1-2]). However, it is more often than not that we

do not have the exact values of the probabilities p and q because not enough data is available or

because p and q partially reflect the decision maker’s subjective opinion. As such, the decision

maker will not exactly know the amount of information, I(-), generated by the independent event

A, B and A gl B. Rather the decision maker has an amount of belief in each of the possible values
of such quantities as I(.). The b.e,h.’e.f is a umber between 0 and 1. The idea of assigning beliefs to

possible values has been introduced by Zadeh [12-13] under the name of Fuzzy Set Theory. For this

reason I(-) is a "fuzzy" number representing the true information given for a specific probability p
resulting from some imprecise measurement.

This discussion, along with results obtained by Kreinovich and Decba [9] for another Cauchy
equation

m(x + U) re(x)+ re(U) (1.2)

which was formulated in the fuzzy setting to address the question: "with what accuracy can we

measure masses re(x) if we use an imprecise mass standard?", motivate us to consider the Cauchy
functional equations in the setting of Fuzzy Set Theory, (see Deeba ct al. [3]). Quantities such as

I(p) or re(x) are therefore fuzzy numbcrs, and values of p and x are positive numbers.

In the fuzzy setting, it is natural to consider assumptions such as

(i) the difference between an expert’s opinion and the true probability should not bc too large;
(ii) if the amount of information generated by some event of probability pq is I(pq) while the
actual amount is u, then we can find two independent events with estimated probabilities p
and q, and actual information contents u and u= such that u u + u2.

Using the notation of Kreinovich and Deeba [9], let P=(u) be the statement that the true value of
the information is u and the estimated value is x. The degree of belief in the statement P,:(u) is

N(x), where N(x) is a fuzzy number that is a continuous function from the set of real numbers R
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to the interval [0, 1] such that lira N(x)(u)= 0 and N(x)(u)-- 0 for u < 0. N(x)(u) denotes the

belief that the true value is u based on measurement x. Let t(P,(u)) denote the degree of belief in

P,(u). Then the dcgrcc of belief in P+u(u) can be defined as follows:

t(P+(u))= sup (min{t(P(u)),t(P(u))}) (1.3)
Ul +u2

where denotes the degree of belief in the corresponding statement (see Fuller [6], Hersch and

aramazza [7], Oden [11], and Zirnmerman [14]). More generally,

t(P0:,u)(u)) sup(min{t(P:(u)),t(Pu(u))}) (1.4)

where the sup is taken over all u and u for which f(u, u:) u. Formula (1.4) can be viewed as

a special case of the "Extension Principle" (see Dubois and Prade [4]).
Assume now that the probabilities p and q for independent events A and B come from distinct

sources S and $3. The resulting estimates of the information for A f’l B come from the combination

of S and $3, which we call S and is given by

Ix(pq) l(p) + I3(q) (1.5)

where l(p) and I3(q) are the information generated by A and B, and represent the amount of

beli’ef in the possible values of A and B. Notice that each/,(.) is a fuzzy number and (1.5) is a

generalization of (1.1). The right hand side of (1.5) is defined as follows: for every y > 0

[I(p) + 13(q)](y) sup (min{I(p)(y) + l(q)(y)}) (1.6)

where the sup is taken over all ya and y such that y y + y. Equation (1.5) is the fuzzy analog
of one of the Pexider equation.

As noted earlier, we may extend the arguments of Kreinovich and Deeba [9] to consider the

fuzzy analog of the Pexider equation

f(z+y)=g(x)+h(y)

which is a generalization of (1.2). In this setting (1.2) reads:

-( + u) -()+

with z and y representing mass measurements (see Kreinovich [8], and Kreinovich and Deeba [9]),
and measurements mi, (i 1,2, 3) in this situation are with respect not to the same standard as

Kreinovich and Deeba discussed in [9], but with respect to different imprecise standards. It is also
clear that similar arguments could be made for measuring many physical quantities. For example,
by considering rates of growth and their imprecise measurements one would arrive at the fuzzy
functional equation

N(x, + x=) N:(z,)N3(z=) (1.7)

where N and Na are estimates of growth at zx and x obtained by different sources, and N is the
estimate resulting from those two sources at zx + x.

The right hand side of (1.7) would be defined, for any y > 0, as:

[N(x)N3(x)](y) sup (rnJn{Nl(xa)(y,),N(x)(y)})

where the sup is taken over all y and y for which yy y.
The above discussion leads us to the study of the four Pexider functional equations where the

functional values are fuzzy numbers as opposed to real numbers. These equations are:
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f( + u) () + (u)

fCxY) g(x) + h(y) (1.9)

f(x + y)= 9(x)h(y) (1.10)

f(xy) g(x)h(y) (1.11)

"t,Ve will thus consider the equation

A(z y) B(z)oC(y) (1.12)

where A(-), B(.) and C(.) are fuzzy numbers, is a binary operation on the reals, and o is a

binary operal,ion on nurnbers properly extended to fuzzy numbers. Our task is to give the proper
formulation of (1.12) and specialize the result to address the four cases of the Pexider equations.

In Section 2 we continue to give background information while in Section 3 we present the

necessary lemmas needed in the analysis of (1.12). The four Pexider equations in the fuzzy setting
will be addressed in Section 4.

2. PRELT" IINARIES.
In this section, we present, for the sake of completeness, more background material needed for

his manuscript. For a detailed study, we refer the reader to Dubois and Prade [5], and Zadeh [12].
Let X be any set. A is a fuzzy set of X if A is a function from X into the interval [0,1]. The

value of A(x) is sometimes referred to as the membership of x in the fuzzy subset A. R and R +

denote throughout the set of reals and positive reals, respectively.
Let A be a fuzzy subset of R +. A is said to be convex if

A(tx, + (1 -t)x) > min{A(x,),A(x2)}

for all z, z2 in R + and E [0,1]. By an a-level of the fuzzy subset A, denoted by [A],,, we mean

[A]. {z e i + A(z) _> a}.

It is well-known that the a-levels of a fuzzy subset A determine A, (see Dubois and Prade [5]). It
can be easily verified that for any fuzzy A:

A is convex if and only if [A],, is convex for all a q [0,1]. (CI)

Throughout we shall consider the case of continuous fuzzy sets. In this situation, for any fuzzy
subset A we have

A is convex if and only if [A]o is a closed interval for all a /[0,1]. ((32)
We recall from Section that a fuzzy number N is a continuous, convex fuzzy set such that

lim N(y) 0 and N(y) 0 for all y < 0. The fuzzy number N is said to be normalized if there
exists a unique y" such that N(y’) 1.

Let t3 be a binary operation on R or some subset of R. We assume that this operation satisfies:

(a) t3 is increasing; that is, if zx < z2 and y < y2, then zya < zt3ya.

(b) Cl is continuous.

Define a function g R R R + by
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The Extension Principle (see Dubois and Prade [5], or Zadeh [12]) states that g can be extended
to fuzzy subsets of R x R as follows:

g(A, B)(y) sup(min{ fi.(yl ), B(y) ), (2.1)

where sup is taken over all yl, y such that g(yl, y) y, and A and B are fuzzy subsets of R. In
this manner, we can cxtcnd the operation [q to fuzzy numbcrs.

Finally, we will need a basic result due to Nguyen [10]. A basic question that we need to address
in developing the results of this paper is: if g is as above, when do we have

[g(M,N)]o 9([M]o, [N],,,), (2.2)

that is, when is the c-level of 9(M, N) the image by 9 of the c-levels of M and N for any fuzzy
subset M and N of R ?

It was shown by Nguyen [10] that (2.2) holds if and only if the sup in (2.1) is assumed. That is,
there exist z" and y" such that

g(M,N)(z) mfn{M(x*),N(y*)}

with z 9(x’, y’).

3. FUZZY REPRESENTATION OF FUNCTIONAL EQUATIONS.
In this section we shall prove several lemmas for the fuzzy functional equation

A(x y) B(x)oC(y) (3.1)

where A(.), B(.) and C(.) are fuzzy non-negative numbers and x, y E R +. The operations and
[] are as defined in (1.12). We note that the assumptions on the operation [] make it possible to
extend it to an operator over fuzzy numbers. These lemmas are basic in understanding how to

manipulate and obtain the solution of equation (3.1).
LEMMA 3.1 If h is a function from R x R .into R + defined by

h(, u) =u
is such that the inverse h-l(z) is bounded, then

[A(x y)], [B(x)],[C(y)],,.

PROOF: Let N and M be two fuzzy subsets of R +. By’ the Extension Principle,

h(N,M)(z) sup (nfan{N(x),M(y)})

sup (min{N(x),M(y)}).
(3.2)

[h(M, N)]= h([N]=, [M]=).

From this it follows that

[N[]M], [N],D[M],.

Since h-l(z)is assumed to be bounded and h-l({z})is closed (note: [] is continuous), it follows
that h-a(z) is compact. This implies that there exist z" and y" such that the sup in (3.2) is attained.
Hence, by Nguyen’s result [10],
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Upon setting N B(z) and 3f C(y), we obtain

[B(=)tnC(y)],, [B(=)],,o[C(y)],,,

or equivalently
[A(= u)]o [B(=)][C(u)].

Remark 3.1 What makes h-l(z) bounded? This is the case if S {(x, y) :rOy z} is bounded.

In case c] ’+’, and x and y belong to R +, then for every z, it is clear that x and y belong to [0, z]
and therefore, S is bounded. IIowever, if r ’x’, one has the boundedness property provided that

x and y are bounded away from the origin. We shall choose in the latter case It,+ {x Ix >_ a}
for a E It +, a fixed and assume that

lim arx +oo.

In this paper, we shall restrict ourselves to It + or It + depending upon the case under consid-

eration.

It can also be easily shown that, since the fuzzy numbers A(x), B(x) and C(x) are continuous,

that

LEMMA 3.2 [A(x)]o, [B(x)], and [C(x)],, are closed sets.

LEMMA 3.3 Let A(x), B(x) and C(x) be any fuzzy numbers. Then their a-levels, [A(x)]o,
[B(x)]o and [C(x)] are bounded and closed intervals.

PROOF: From (C1) and Lemma 3.2, it follows that [A(x)] is a closed intervM. Since

lim A(x)(u) 0, the right end point of this interval is finite.

The proof for [B(x)] and [C(x)] arc similar.

t LA(x), Ls(x) and Lc(x) be the left endpoints of [A(=)], [B(x] and [C(x)], respectively.
Similarly, let R(z), Rs(x) and Re(x) be the right endpoints of [A(x)], [B(x)] d [C(x)],
respectively.
LEMMA 3.4 The left cndpoints L(x) (i A, B, C) and the right endpoints &(x) (i A, B, C)

of the intervMs [A(z)], [B(x)] and [C(x)] satisfy equations

L(x . y) Ls(x)OLc(y)

R(= , ) R(=)()
(E)

PROOF: If [A(z)], [La(z),R(z)], [B(z)], [Lu(z),Rs(z)] d [C(z)] [Lc(z),(z)],
then [A(x. y)] [B(x)],[C(y)], in Lena 3.1 d the sumption that the operation is
increing will imply the equations

L(x . y) L,(x)OLc(y)

( , ) R.(=)()

FinMly, Lemma 3.4 can be restated :
LEMMA 3.5 The a-levels, [A(x)]., [B(x)]. and [C(x)], e all of the form [S(x), T(x)] (i A,

B d C), where S(x) and (x) (i A, B and C) are solutions of equations (E).

PEXIDER FUNCTIONAL EQUATION-FUZZY ANALOG.
In this section we shall consider the solution of the Pexider equations

f(x + y)= g(z) + h(y) (4.1)
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/(zy) g(z)+ h(y) (4.2)

f(x + y)= g(x)h(y) (4.3)

f(xy) g(x)h(y) (4.4)

but in the fuzzy setting. The above four equations will be considered as special cases of equation

(3.1) given by

A(x y) B(x)OC(y). (F)

Case 1. (F) is the fuzzy analog of (4.1) if and [] are replaced by addition ’+’. We assume that z

and y belong to R +. In this case (4.1) is given by

A(z + y) B(x) + C(y) (F1)

with equations (E) reading
LA(z + y) LB(x) + Lc(y)

( + ) R,() + no(U)
(El)

Since the set S {(z, y) z + y z} is bounded for every fixed z in R +, it follows that Lemma
3.3 through Lemma 3.5 hold. The solution to the system (El) is

where
LA(X) LB(x) + Lc(y), and hA(X) ns(x) + Re(x).

LA(x) k,x + b, + o, nA(x) k2x + b2 + c2;

Ls(x) kax + b,, R,(x) kx + b; (El)

iv(x) k,x + c,, Re(x) kx + c;

Thus [a(x)]. [LA(x),RA(x)][La,.(x),RA,(x)], where La,a(x) k,x + b, + oa, d

RA,.(x) k.x + b. + c.. The subscript a is used to show dependency on a.

Now, y 6 [A(z)]. if and only if

A(x)(y) a La,(z) y Ra,,(z)
(4.5)

kxz + bx + c y kx + b + c;

For each x fixed, z _> 0, consider the function

hx(tl, t) tlz + t.

By the Extension Theorem, hx can be extended to fuzzy subsets N1 and N of R x R as follows:

h(tl,t)(z) sup (mJn{Nl(t,),N2(t)})
hx(tl,t:)=z (4.6)
sup (rrfin{N(tx),N(t2)})

tlZ+t2=z

hZ’(z) {(t,,t) ix + t z}. If t,,t= > O, then hZ’(z) is bounded for every fixed z. Hence,

by Nguyen’s result in [10].

[(N,, N=)] h([,], [N])

[U,] + [W] (4.)

[x,]+ [, + ,, +]
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Here, we pick
N(.) u ^Xto.ol(.)

o<a<l

o<1

Equations (4.5)and (4.7) yield

[A(z)] [h,(N, N)],

or

A(z) h:(Na,N2)= Nlz + N2,

where N1 and N defined in terms of [N1]o and [N], in (4.8).
We next investigate B(z),, and C(z),,. It is known that

[N,Ix +

where Bo(’) supo<,< a A x[b,,, b2o,]’.

Similarly,
[C()]o [,o + ,o, +

[,,1 + [,,]

[,], + [Co]

where Co(.) supo<,,_< c A X[Cl,, c:,,,]..
Also note that Bo + Co N. Symbolically,

A(x) Nix+N2

B(x) Wax, + Bo

C(x) N,z + Co

535

(4.9)

(4.10)

(4.11)

LA(Zy) Ls(z) + Lc(y)
(E2)

As in Ce 1, for Lena 3.1 through 3.5 to hold, we need the set S {(z,y) xy z} to be

bounded. This is the ce if z and y belong to the set, say, R { > 1}. The solutions to the

system (E2) are

LA(x) k log(bxcz), RA(X)= k log(b2cz);

Ls(z) k log(b,z), Rs(z) k log(bz);

Lc(z) k, log(c,z), (z) k, log(c2z);

A(zy) B(z) + C(y) (F2)

and equations (E) read

Case 2. (F) is the fuzzy analog of equation (4.2) if is replaced by multiplication ’.’ and r3 is

replaced by addition ’+’. In this case (4.2) reads:

with Bo + Co N2.
THEOREM 4.1 The solution of the fuzzy Pexider equation (F1) is given by (4.11).
This is analogous to the solution of the "classical" Pexider equation (4.1), where NI, N2, B0

and Co are real numbers.
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By introducing a transformation x e and y e for all u, v in R + (note that z > 1 and y > 1,)

we can reduce equation (F2) to a new equation:

A(e"+) B(e") + C(eV).

Lct/() A(e),/() I3(e), and () CCe). Then equation (4.12) becomes

(4.12)

This equation is solved in Case 1:

]t(u) N,u + g,

[() v. + Bo

(,) N,, + Co
where

/v(.) up , ^ t,.,o(’),
o<1

B0(.) sup
o<5

co(.) up
0<1

(.) oo+co
(These e not the se k’s, b’s and o’s above.)

Therefore,
A() A(og.) , og. + 0 + Co

B(.) (og z) (4.13)

THEOREM 4.2 The solution of the fuzzy Pexider equation (F2) is given by (4.13).
These results are analogous to the "classical" solution of the Pexider equation (4.2) with thc

proper interpretation of N1, N, B0 and Co.
Case 3. Equation (F) is the fuzzy analog of equation (4.3) if is replaced by ’+’ and ’t:l’ is

replaced by’.’. For this case, (F) reads

ACx + y) BCx)CCy) (f3)

and equations (E) read as:

Lt(x + y) Lv(x)Lc(y)

n( + u) R()R(u)

For Lemma 3.1 through 3.5 to hold, the set S {(z, y) xy z} must be bounded. This is the

case since we restrict ourselves to the set R + {v v > 1}. We note that we do not know if

all solutions of (E3) over It + are the restrictions of solutions of (E3) over R + and the question of

uniqueness to the best of our knowledge is open.
The solution that will be exhibited for (F3) will be valid for z > 1 and in here we will assume

that A(x) 0 for x _< 1.

The solutions to the system (E3) are

LA(X) blcle’’, RA(x) bzc:eZ;

L.(:) b,’’‘, (.) bg’.;
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Thus [A(z)],, [b,,cl,eho:, b2,Coek]. Now y E [A(z)] if and only if

where

Now considcr the function h(t,,t) te’’. Let p(t,t2) logh(t,,t) logt + t,x + t,z.

(or, h,,(t, t)= er"("’t).) As in Ce 1, we have

(N,, N)] p([g,],

[N,]o + [N], (4.15)
[,.,] + [og(,,),o(.)]

N,(.) Uo<s, xt,,.,,()
(.1)

By the relation between h and p we conclude

[bocl,,e’’o, b2oc:,e’2o:]
So, A(x) h:(gl, N2), where N and N defined in terms of IN, I,, and IN,It, in (4.16), or

Similarly, we can find B(x) and C(x).
A(x) NeN’’:. (4.17)

B() B0
where Bo(’) sup0<<, a A x[b,o,, b,](.), and

(4.18)

C(x) CoeN’= (4.19)

where Co(-) supo<,<, c AXIc, co](-).
Also note that BoCo N.
THEOREM 4.3 The solution of the fuzzy Pexider equation (F3) is given by (4.17), (4.18) and

(4.19).
They are alogous to the solution of the "clsical" Pexider equation (4.3) with Nl, N, B0
d C0 being M1 real numbers.

Ce 4. (F) is the fuzzy analog of equation (4.4) if both and u e replaced by ’.’. For this

ce equation (F)
A(xy) B(x)O(y) (F4)

and equations (E) read as"

LA(xy) Ls(x)Lo(y)
(E4)

R,(:) R.(:)R()
Like in Case 3, we restrict ourselves for all x and y in R +. R + forms a semi-group under multi-
plication and it generates the group (R +, .). Therefore, all solutions of equation (F4) over R + are

the restriction of the solutions over R + (see Aczl [1-2]).
Like in Case 2, by introducing a transformation x e and y e" for all u, v in R + (note that

x > and y > 1, we can reduce equation (4.4) to a new equation:

A(+) B()C().
Let A() A(e),/() B(e), and 0() C(e). Then equation (4.20) becomes

(4.20)

A(, + ,)= $(,,)0(,,).
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This equation is solved in Case 3:

1(,) N=’"
d(,) Co

Note that BoCo N2.
Therefore,

A(x) ,2.(log x) N2eN logx N2T,N,

B(x) =/)(log x) BoeN og, BozN (4.21)
c() O0og) c0’’’ c0,

THEOREM 4.4 The solution of the fuzzy Pexider equation (F4) is given by (4.21).
These results are analogous to the "classical" solutions of equation (4.4), where Nx, N2, Bo and

Co are real numbers.

Remark. In this manuscript, we attempt to formulate and solve an important class of functional

equations in the setting of Fuzzy Set Theory. This may generate the motivation to study such

equations from this perspective given that they arise in many settings, (e.g. information theory,

economics, etc.) where measurements may be imprecise.
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