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ABSTRACT. The authors prove that the nonlinear parabolic partial differential equation
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with homogeneous Dirichlet boundary conditions and a nonnegative initial condition has a nonneg-

drive generalized solution u. They also give necessary and sufficient condition,s on the constitutive

functions ,j and f which ensure the existence of a time 0 > 0 for which u vanishes for all >_ to.
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INTRODUCTION.
We consider the nonlinear initial-boundary value problem

(1.1)

in which (p,) is an n x n symmetric matrix and the domain ft C_ R is bounded. We assume

that the functions ,, and the nonnegative, nondecreasing function f are in C([0, ))Cl C((0, c))
and satisfy f(0) p,,(0) 0. Furthermore, we assume that the matrix O’(s) O(s)is positive

definite on (0,) and there exists a positive function e C((0, ec)) such that

for s > 0, " e R where A(s) =/r(q)(s)), the trace of the matrix O(s), so that A’(s) tr(O’(s)).
The main purpose of this article is to prove that the initial- boundary value problem (1.1) has a

solution and to give necessary and sufficient conditions on the constitutive functions p, and f to
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ensure the existence of a finite extillction tim(" (i.e., a tie l0 > 0 such that any solution u satisfies

u(,r, t)=0 for all (,r,t) flx [/0, ) ).
Such problems have been cosidered for over two decades for the isotropic problen in which

the matrix is a scalar multiple of the identity matrix (i.e., I). (Sec [1],[2],[3],[4],[5],[6],[7]
and their references.) The main t] tst of llese stdi(’s has been the determiation of conditions on

the functions and f which ensure the exislence o nonexistence of a finite extiction time. For

a single equation (s [2] for systemics), the principal results can be sunmarized by those contained

in [6] which contains all of the otlcr results when homogeneous Dirichlet boundary conditions a.re

specified. There it is shown that a sufficient condition to ensure the existence of a finite extinction

time is that (e > 0)
ds d.s

holds. Conversely, the authors prove that if it is known that a solution has a finite extinction time,

then

must hold.

For anisotropic diffusion, such results are virtually nonexistent. Indeed the authors know of

no results in which either existence of a solution or existence of a finite extinction time for problem

(1.1) has been treated. Other problems for special cases of (1.1) hav been studied. or example,

Kersner [8] demonstrates some properties of the solution to the Cauchy problem for the equation

It is well-known that classical solutions to (1.1) do not, in general, exist and hence weak

solutions must be considered. We prove the existence of such a solution. Our definition of a weak,
or generalized, solution is quite similar to that of Benilan et al [9]. In addition to existence of a

solution, we give necessary and suNcient conditions for the existence of a finite extinction time. In
particular, we show that if

ds
< (1.3)

or if there exists some m {1,2,...,n} such that

ds

then any lution to our problem has a finite extinction time. On the other hand, we show that a

necessary condition for the existence of a finite extinction time is

ds

I(l +(( < (

These resets contain all of those for the isotropic problem for which a bounded main and Dirichlet

boundary conditions are specified.

STATEMENT OF MAIN RESULTS.
Since problem (1.1) does not, in general, have a classical solution even in the isotropic ce

(see [4]), it is necessary to work with a weaker formulation of a solution. In the following, we give
the definition of a generalized solution. It should be noted that our definition is similar to that of
Benil,n et al (see p. 218 of [9]).
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I)Ei;’INITION. lle sequece of problens (0. is tle natrix (,ta))

Ova. 0

(t,) 0 on O x [0,.) (2.1)

,t.(.r, 0) ’0,t (.r) > 0 on

is called an atpro.t’mat,g seqte,c of problcn,.s for the problem if the sequences of (’2([0, ))
functions {a}=, and C"([0, ))functions {./ }g, conve,’ge to p,,, and .[, respectively, uniforn,ly
on compa,ct subsets of [0, ) and the sequence {"0,t-} converges to

DEFINITION. A function u L(Q) is a generalized solution of the initial-boudary value

problem (1.1)if for each T > 0, the function u can be written as the weak L(QT) limit ot’a sequence
of classical solutions to an approximating sequence of problems for the problem (1.1).

The main purpose of this article is to prove the following three theorems.

THEOREM 1. (E.rzs*ence) Suppose u0 is a nonnegative function continuous on ft. Then the

initial-boundary value problem (1.1) has a nonnegative generalized solution u and II(.,t)ll..
I1011,, for all e 0.

We are also interested in establishing both necessary and sucient conditions on the matrix

and the function f which ensure the existence of a finite extinction time for these weak solutions.

The following two theorems are natural extensions of similar results for the isotropic case [6].
THEOREM 2. (Necessity) Let u0 be a nontrivial nonnegative function continuous on ft. If

any nonnegative, bounded, generalized solution to the problem (1.1) has a finite extinction time,

then (1.8) holds.

THEOREM 3. (Sucienw) Let u0 be a nonnegative function continuous on . If either (1.3)
holds or (1.4) holds for some m 1,2, n}, then any nonnegative, bounded, generalized solution

of (1.1) has a finite extinction time.

It should be noted that there is a gap between necessity and suciency which the authors
have been unable to fill. That is, we show that a sucienct condition to ensure the existence of
a finite extinction time is to have either strong absorption (i.e., f satisfies (1.3)) or fast diffusion

in (at least) one direction (i.e., for some m, (1.4) holds). However, necessity requires only that
some combination of the absorption and diffusion be "ft" (i.e., (1.5) holds). Thus, suppose that

one has absorption and diffusion terms for which the integrals in (1.3) and (1.4) are infinite for

all m 1,..., n while inequality (1.5) holds. (Such functions do exist.) Does any solution to the

resulting problem (1.1) have a finite extinction time? The authors have been unable to answer this

question.

a PROOF OF EXISTENCE.

PROOF OF THEOREM 1. Let {u0,} be a sequence of Cg() functions converging uniformly
on fl to u0. Furthermore, we choose u0, so that ]]u0,ll,, I1011..
i,j 5 n, nd {f} be sequences of functions such that ,, ([0, )), the matrix (s) (i.e., the
matrix ((s))) is positive definite on compact subsets of [0, ), f e C([0, )) has a positive
derivative everywhere and a + ,, and f f uniformly on compact subsets of [0,

The existence of the sequences {} and {f} are fairly easy to demonstrate. % produce the
sequence {}, we set (s) ’(1/k) for s 1/k nd t ,(s)
g (a)da. Clearly, the sequence {} has the required properties (except for smoothness). In
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part i( [ar, ’,’e not(,

,1
for MI s [0, ,/] nd ". A l)prol)ral( )()o approximation o this # will provide the

required Se(lmnce. The sequence

From l.adyzenskaia ct al [10] (,ee p. 157) we know tlzal the sequence of inilial-boutdary value

prol)lems give by (2.1) willz al f as jusl defized las a uique nonnegat.ive classical solution

on QT if0 < T < .
e llow establish that a classical solution to (2.1) exists on Q,. This is easy l.o do as tllows:

Let w be a classical solution on Q and define , t, on 0 and u 0 elsewhere. Similarly,

let v2 be a classical solution on Q and define u u,a on Qa and u 0 otherwise. Continue

this process to produce a sequence {u} for which u,, w on Q,, and u,, 0 otherwise.

Since the classical solution on Q,,, is unique, we get u,,, u+ on Q. Furthermore, we get
0 u u+ llu0.[l. M

Thus the sequence {u} converges pointwise on Q. Let v lim_ u and notice that,

v u on = for all m. Thus, given any point in Q, m may be chosen suciently large that

u at that point and thus v is a (not necessarily unique) nonnegative classical solution to (2.1)
on .

Since this classical solution obviously depends on k, we now let it be denoted by v and

observe that I1(-,*)11,, I1,011., for n nd [0, ). % obtain a generalized solution to

our problem, we let T E (0,) and note that we need only prove that the sequence {v} has

subsequence {v=} which converges weakly in (Qr). Then, after reindexing the sequences {,},
{f} and {u0,} replacing k with a’,, we obtain the ai-a ,.ult. Thu, let T (0,) na
prove that the sequence {v} has a subsequence {v=} which is weakly convergent in La(Om). For
ease of notation, we let w v, mtltiply the differential equation in (2.1) by w and integrate over

Q. Integration by parts produces

1 w=(x, t)dx + dxdr + wf(w)dxdr

valid for all [0, T]. Using (3.1) and the positiveness of h, we get

f( u,dx

for all [0, T]. Integrating over [0, T], we have

which, in turn, produces

/Qr vdxdt <_ MTItl.
Since the right side of this inequality is bounded independently of k, the reflexivity of L(QT) yields
the existence of a subsequence of {vk} which converges weakly in L(QT). This completes the proof
of Theorem 1.

4 PROOFS OF EXTINCTION RESULTS.
PROOF OF THEOREM 2. Let u be a nonnegative, bounded, generalized solution to (1.1).

Let to be the extinction time for u with 0 < to < oc and let x0 E ft such that u0(xo) > 0. Choose
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r > 0 and > 0 so that B {.rE z I.- ol <_ ,}

_
z ,,,, .o(.) >_ 6 o,-all .r B. Let h be the

function defined by

0 ifl,r-,r0lr
We note that h satisfies 0 h(.r) on B, fnh(x)dx < , and [h[ Kh on f for some

constan K depending only on the value of r. We define he sequence of nonnegative functions {a
by a(s) A(s)+ f(s) where A r() and he sequences {}, {A}, and {"0,} are defined

as in the proof of Theorem 1. Now le {u} be a corresponding sequence of classical solutions o
(2.1) which converges weakly in L(Qo+ to u. multiply (2.1) (wih v replaced by u) by h,
divide by a(u) + e (e > O) and itegrate over . After integrating by parts, we get

We let H be defined by

(4.1)

[Vh(x)[ for Ix- Xo] < r
H(x) h(x)l/

0 for [x-x0l>_r.

We note that H is continuous and bounded on . (In fact, 0 _< H(x) <_ Kx/ where the constant

K comes from the properties of h above.) Using the fact that hX/:H [Vh[ on f and elementary

estimates, the second integral on the right side of (4.1) may be estimated as

ak(u.) + e ak(u) + e

Ill h

H dx
(a() + ) .

> _/. [(u)Vu[h 1/. HZdx(() + )
d

We now substitute this expression into (4.1) and use the fact that A(u) a(u) + e to obtn

d: h dx >
() + (() + )

[ [(u)Vu[h fex- t_
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We use the positive definiteness of 0,., inequality (3.1), a,d the inequality a’(s) A(s) in (4.2) to

get (The argument u has been Sl)pressed tr ease of reading.)

dt o(,,) + e (, + )

> IIdx- hdx-
4

Integrating this inequality over the interval [0, ] produces

for all 0 < . Thus, integrating this over the intervM It0, t0 + 1], produces

to+, .,(.,t) h(x)ds dxdt > dx- Ko(to + 1). (4.3)
A() + () + A.() + () +

Since for fixed k and fixed > 0, the function F defined by

ds
F(I=

A(l + A(I +
.is concave, Jensen’s inequality (see [ll] p. 202) may be applied to the left side of (4.a) to get

"(’ dx Ko(to +1).
u,(,o) ds

h(x)
Ak(s) + A(s) + e

d

where

/t0+i/, h(x)u(x,t)dxdt.u(to)
o

We now let k pproach . The weak convergence of {u} to u, the L() convergence of

{uo,} to uo as well as the uniform convergence of A and f to A and f, respectively, produces

IU(to} ds [ h(x)[.o(.) dx Ko(to + 1).
ds

Jo i() + f() + ,, o A() + () +
where

/.,o+1 h(),(,t)&dt.u(0)
,o

Furthermore, since to is the extinction time for u, we have u(x, t) 0 for almost all (z, t) e
12 x [to, cz). Therefore, the last inequality yields

in L’() ds
dx < Ko(to + 1).h(x) h(s) + f(s) +

By our choice of the set B and the function h, this inequality produces

itt L il L"(’, ds
dx,<Ko(to+l,&<- ()

()+i()+
() () + i() +

and hence

ff d < Ko(to + 1)
A() + i() + S ()& <

Now let e 0 and the proof of Theorem 2 is complete.
PROOF OF TgEOREM . Suppos 0 5 u0 M. If (1.3) holds, then the proof of the

xistence of a finite extinction tim is quit similar to that of the isotropic c (se Theorem of

[5]) d is therefore omitted.
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"l’lus, suppose (1.1) holds for some 7,. For ease of notation, we let , C,loose r > 0

so that fi C_ {x R ],r,[ < r, < < n} and let zo Iwa (’’(R) function such that zo(.r,,,)= M
for [x,,l < ," and zo(-r- 1) z0(,’ + 1) 0. Let, be a nild solution (as in [9] and [12]) to the

initial-boundary value problen

O 0
o.-. ’,(.-) fo,-I."ml < ,+ ,

O---[ z

z(-r I. t) 0 fox"

z(r + l.t) 0 for

z(.r,,,O) z0(x,,) for Izml _< r+

t>0

t>0

/>0

From [1], we know that z has a finite extinction titne, To. We shall show that u 1) a.e. for

> To. Thus let T (To, c). Sice u is a generalized solution of (1.1), there exist sequences

{,}ff= and {f} of well-behaved functions converging uniformly on compact subsets of [0, c) to

,, < i,j < n, and to f, respectively, such that the sequence {v} of classical solutions to (2.1)
converges weakly in L(QT) to the solution u. Let z be the unique classical solution of

0 0
0--./,:(zk) for Ix,] < r + 1,O--z

zk(--r 1, t) 0 for

Zk(r -t- 1,/) 0 for

z(x, O)= Zo(X,) for Iml _< / 1,

t>0

t>0

t>0

From Sacks [121 (see Proposition 2.1 of [121), we know that z z in C([0, T]; L’(-r- 1,r + 1)).
Also, since z satisfies

L,za 0 < f(m,) Lava in QT

v < z, on Of x [0, T]
v(x,O) < Zo(X) on ft

where L is the operator defined by

0

,3=1

OW
Ot

the results from Protter and Weinberger [13] (see pp. 187-188) yield v < z on QT for all k. Hence

v(x, t)dx < z(x,, t)dx

We now let k --. c to get

Thus, since z vanishes for > To, we must have u 0 a.e. on ftx [To, T]. Since T was chosen

arbitrarily from (To, c), we must have u 0 a.e. on f x [To, oe). This completes the proof of

Theorem 3.
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