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ABSTRACT. In this paper a uniform estimate is obtained for the remainder term in the central

limit theorem (CLT) for a sequence of random vectors forming a homogeneous Markov chain with

arbitrary set of states. The result makes it possible to estimate the rate of convergence in the CLT
without assuming the finiteness of the absolute third moment of the transition probabilities. Some

consequences are also proved
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1. INTRODUCTION.
Let Xl, z2, be a homogeneous Markov process with an arbitrary set of states X, defined by the

transition probability function P(, A), ( E X, A E x (a-algebra of subsets of X), and the initial

distribution:

P(Zl A)= 7r(A), A x.
Suppose that P(., .) satisfies the following condition ofuniform ergodicity:

sup IP(5, A)- P(r/, A)I- p < 1.
,7 X,A 9x

(1.1)

It is well known that (see [13]) if(1.1) is fulfilled, then a stationary distribution P(A), A E x exists.

Let

f()- (fl() ,fk()),

where f,(.), (i 1, k) are real x-measurable functions defined on X. Without loss ofgenerality, in the

next we shall suppose that

x
.f, OT)P(drl) O, 1, k

Suppose that the matrix h ]]a,3]l, where

(7. p[f.(Zi)f3(i) q- p[f.(,)f,(.+1)] q-
r=l r=l
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is positive definite Let,

Bf(x,.), P,(A) P(S E A),S,- v ,.-1

A,(A) P,(A)- (A) A B

where the matrix B is such that BB A-, (.) is the standard nodal measure in k, and Bk is the

class of all Borel sets in

In many aicles (see for example, [2],[5],[6],[7], and [8]) ufo estimates (in paicul, the

Be-Essen bounds) are obtained for the qutity"

sup [A,(A)I, (1.2)
AB

under the condition that the transition probability nction P(.,.) has a fit absolute moment of order

not less than tee. (Here B is the class of all convex measurable sets in ).
In the present work a unifo estimate is obtained for (1.2) thout assung the fiteness of:

ms sup
Xdx

TMs estimate eends the results peMMng to the case of the estence of absolute moments for the

trsition probabilities of order not less than the tMrd for a sequence of rdom vtors that e either

independent d identicMly distfibut (P(.,.)= P(.)= n(.)), or lied in a homogeneous Mkov

chMn (, for example, ], [19], d [20]).
Some other results, conceng (1.2), e Mso #yen.
We introduce the follong "truncated" moments:

X
6n= fx ,f(),P(d) f, ,f()11 S(,d),+ f’n ,f(,)lP(d) fx ’f() S(, d),,

d put,

La"-
,=1 e X

Ln (X,A)-1 I(Oi, f())lP(d) I(0,, f())l IS(, dw)l +

+ f .(Oi, f())lP(d) fx .(Oj, f()), ,S(,d).],
l A’l /xn l(O,., f())lTr(d,)Lr.n-

r=l

where 0, u 1, 2, k are orthonormal eigenvectors ofA and ),2, are the corresponding eigenvalues,

< :}, xn x\x,,

IS(., A)I is the complete variation ofthe measure,
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S(.,A)- Z (P’:’(.,A)- P(A)) A Ox
r=l

and P(., .) is the transition probability function after r-steps The measure S(.,A), A x exists in

accordance with condition (1 l)

2. FORMULATION OF THE RESULTS
THEOREM 1. The inequality

sup I(A)I _< C(,p) Lo + Lo + L,n + + p (2.1)
AB

holds tree. Wher here and in what follows, C(.) denote a positive constant, not the same at different

places, which depends only on the arguments in the parentheses
As it is shown in [1 ], [11], and 15] the expression L. characterizes the cosponding result in th

case where suation of independent identically distributed random vectors (p(., .)= p(.)= n(.)) is
considered. The expression L characterizes, in some sense, the dependence stmctur of the random

vectors

f(x), f(x) (2.2)

(L, 0 for independent identically distributed random vectors).. Ifg(x) is an increasing nction, with positive arment, defined on k, such that ,)
is non-decreasing, and lim g(x) , and if

sup [ II()l:(lI(v)l)P(,dv) < ,
X Jx

then (2.1) remains tree, but th the replacement of (L& + L,) by (L + Qa)/g(k), where

k

( + 7) sup ]x I(, I()1(1(, I(v))l)P(, an), aL
=1 X

Qa [fx ,(o,, f())JP(d) Ix [(0, f())lg(l(Ov, f())l),S(,d),
,:1 j:l

If (.) p(.), then the sequence (2.2) fos a station sequence of rdom vectors d in tNs
case Theorem has the follong simple fo:
EON. If(.) p(.), then

sup IA,(A)I C(k,p)[Lz, + Le,]. (2.3)
AB

Repeating the ments given in [3], d [4], one can see that the estimate (2.3) has a uvers
chacter. In paicular, from (2.3) one can derive an analo of the generalized Be-Esseen inequity
adduced in [12], d [16] for independent rdom vectors.

The ne result follows from Theorem 1.

THEOM 3. If

sup [ [f()[2P(,d)< ,
ex Jx

then the CLT holds for the sequence (2.2), i.. for any itial distribution (.):
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sup IZ.(A)I 0 as n c
A E Bo

AUXILIARY RESULTS
Assume that

/k=J (3 l)

where J is the k-dimensional unit matrix Consequently B J Assume also that

+ 6n <_ C(k,p). (3.2)

Through the proof of Theorem l, it is shown that assumptions (3.1) and (3.2) do not bound the
generality

Let

fn(’) (fnl(’),fn2(’),’",fnk(’))
f(’), If(’)l-< V/
0 If(’)l > V/

1 A(x)Sn-
,-=

n(t) E[e’(t’’)]
Put

11 max(l, Itl), and

where

n 20M3(P)/n and M(p) (9 + 12p)/(1- p).

LEMMA 3.1. For Itl <

I.(t)- e-lt"’21 _< C(k,p) - d- 6n max(It], It] --’/’r,l vfj
+C(1)/. +p V/-.

PROOF. Put

o., E,[I..(xl)I.,(Xl)] +EE,[f..(Xl)f.(x+l)
r--I

+EEp[f.,(xl)fn,(x’+l) Ep[f.,(xl)fn.(x.+1)]]
r=I

It is clear that, for 1, k, r 1, 2,

Ep[fni(Xl) Ep[fn,(Xr+l)

Therefore,

IG[A,(Xl)]I

(3.3)

(3.4)
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Similarly, it is easy to see that, for any i, .7 1, k

x/ (3 )

Further, using (3 3), for any and .7

+ I/(5)lP(dS). li(n)l(5, dn) (3 6)

where (x,.) is the complete variation of the measure (P(l(x,.) P(.)) From (3.4)-(3 6), it follows

that

where 6, is the kronker’s symbol

Consider the x-measurable function

L,. () L() (t, ].()), xX,

and let mt= Ep[ft(xl)],

o2 Ev[(S,(xl mr)2] + 2’ fEp[f,(xl)S,(x,.+,)] rn2]

and

f
sup l I,() mtl3P(,dlT).
ex3x

It is easy to see that

k

Imtl <_ lt.I ltl "
3=

rt
(3.8)

and that

o, (t, (3.9)

where

It follows from (3.1) and (3.7)-(3.9) that,

’at2- ]tl2] < C(k,P)(n + 6,) It] (3.10)

Consider now the sum of one-dimensional random variables

_,,-, 1 n+l
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and put

(-) E(’so),
100Ma (p),yt3

According to the results of[14], we have for [7- < T,,

27t roll 1

where

roll IX Ift()lTr(d)

In accordance with (3.2) and (3.10), we have

[a- Iris[ _< 1/2 Itl

and consequently,

1/2< <3/2, (3.12)

As a consequence of(3.8), it is easy to see that

7 < 5ltla
On putting (see [14]) , 20M3(p)n, we get from (3.12) and (3.13), that

50#.ltla, 100M3(p)
< < 1 for Itl <,,- atV/- 50,

-T,,.

(3.13)

It is not hard to see that

,(t) e’vm ,(at). (3.14)

From (3.11) and (3.14), on noticing that roll _< Itlm,l, and 7ia/ata < 10 X/, it follows that

[ 1
Further, using (3.8), (3.10), and (3.12), consistent with (3.2), it is easy to see that

[e’v/’m- -e-ltl’[ < gltl- +C(k,p) +6. Itl e- (3.16)

Finally, the assertion ofthe lemma follows from (3.15) and (3.16).
Through the proof of Theorem 1, we shall need estimates for the derivatives of the characteristic

function ,(.). Let us fix a direction 0 and let te be the projection onto 0.

LEMMA 3.2. a. For any u > 0, and for Itl < C0(k, p)T2/

O’("(t)-o e-ltl u)[ ’e--ltl2( n mr’l) --ml ]) < C(k,p, [’[ + + (1/3 + 2/3p)nlt[

where
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v" max(2u, u + 3), rnl
f

sup llf(n)lP(, tin).

b For any v > 0, and for It[ <_ T,

sup ,() < c(k, u) I’le-oll m 1 2

0
p, +Itl +p

The proof of this lemma is easily obtained by repeating, word for word, the arguments of the proof of
Lemma 2 in [8] with the use of the general spectral theory of linear operators acting in the Banach

space of all bounded functions with the uniform norm Through the proof of part b, Lemma 3 ofChapter
6 in 16] is used

Let

,(A) =,(A) P(A) AEBk

where P(.) is a distribution function in k. Let r](1) be such a vector that

P[(A) P(r/(1) E A) and

where Xx X1 (k) depends only on k.

For any T > 0, put

rl
(T) T-in, P(r(A) P(rl(T) a)

where denotes the composition operation.
The following lemma is proved in [18] and [20].
LEMblA 3.3. For any T > 0

P(]r/1) > h) _< X1 h-1

and lkT(A) (,, P.)(A)

I&r(A)l +
12 X/ XI k3/2sup IA.(A)I _< 2 sup

A Bo A B, V/ T

Ifr/() has the distribution with density

u(z) c,, [Jlz (Izll2r)/Izll] 2 (3.17)

where J/(.) is the Bessel nction of order k12, the constt k, is such that f u(x)dz 1, d r is

a positive integer, then for all 5 k + q

q-1
r > 2 + (3.18)

k+l
E[Ir/)l"] <_ X,(k,q)< oo, if

e’(t’x)P(dx) =0. (3.19)

and for Itl > 1

A,.,(A) P,(A) (A),

4. PROOFS OF THE THEOREMS
PROOF OF THEOREM 1. Let

P.(A) P(S. e A) and

It is not difficult to see that for any A Bk

n+l

IP.(A) -.(A)I < e(If(x)l > v/-
r----1

AGBk

(4.1)
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Further

P(If(x)l > V/’) L 7r(dx)< m. (4 2)

and for r > 2

P(lf(x,.)] >_ vf-)- fx" P("-l)(x’-’)Tr(dx) <- sup P("-)(x’X")x -< sup P(x,X,,)x
1

sup fff If(rl)12P(,dr]) < &-< (v’-) v/ e x (v//
(4.3)

It follows from (4 1)-(4 3) that

m, /.
(4.4)IP(A)- P(A)I _< -- + x,/-

Therefore, for any A E B

m,l f,,
(4.5)I/(A)I < I/X,(m)l + -- +-Let T > 0 and n.T(A)- (n * Pr)(A), where P6 is the distribution with the density defined by

(3.17). It follows from Lemma 3.3 that

C()
sup I/,,,(A)I < 2 sup I/Xn.r(A)l + (4.6)

A E B A e B T

Let

VT(t) E[e(t’o(r))]
Thus, from (3.18) and (3.19), we have VT(t) 0, for Itl > T, and for all , < k + q

sup
0

< E[lor)l,,, <
T. (4.7)

Now, we put T T, (defined in Lemma 3.1), and q 1. It is clear that the generalized measure

with the characteristic function

wo(t) (o(t)-
satisfies all the conditions ofLemma in 17]. Hence, from (4.7), for any 0 < Y0 < oo, we have

Ot---- Wn(t) dt _< C(T,,o) =maXo, o I<_T,
e,(t) e-{Itl’ dt

where

C(T,.,,,.,o) C(,,)/T,:.
=0 YO

In accordance with (3.2) it follows from Lemmas 3.1 and 3.2, that for any t/< k + 1

sup n(t) e-i Itl f/n mr.1 1 2

O I_<T.
dt <_ C(k, p, u) + 5, +- + + - p (4.9)

It follows from (4.9), on using Lemma of 17], that
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sup I.T.(A)I < C(k,p) --- +,5 +--- + - +-p (4]0)
AB

Theorem follows from (4 5), (4 6), and (4 10) if conditions (3 1) and (3 2) are satisfied

It is clear that the generality of Theorem is not lost by condition (3 2) because in the opposite

case the obtained estimate is trivial Finally the proof that condition (3 1) is nonessential is obtained by

repeating, word-for-word, the corresponding part in the proofofTheorem 3 1, p. 108 in [19].
PROOF OF THEOREM 2. The proof of Theorem 2 goes along the lines of the proof of

Theorem 1, where the condition 7r(.) P(.) is taken into account.

PROOF OF THEOREM 3. It suffices to prove Theorem 3 under the condition 7r(.) P(.) (the
general case reduces to this partial one) By Theorem it suffices to show that

L, + L. 0 as n oo (4.11)

Since m2 < oo, then

sup /’/__ I(O,,f(rl))12P(,dr/) 0, as Z- O0

It is not hard to see that

lfx [xfxI(O,,f(r/))l P(,dr/) < C(k) -+II/<.)I>/-, (O’ f(r/) )12P(" d7)]
Hence,

La. - 0, as n oo.

Also, for L., one can show, using Holder’s inequality, that

1/2

(4.12)

(4.13)

It is clear from (4.13) that

Le. 0 as n oo (4.14)

Finally, from (4.12) and (4.14), we get the assertion ofTheorem 3.
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