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ABSTRACT. In this paper a uniform estimate is obtained for the remainder term in the central
limit theorem (CLT) for a sequence of random vectors forming a homogeneous Markov chain with
arbitrary set of states. The result makes it possible to estimate the rate of convergence in the CLT
without assuming the finiteness of the absolute third moment of the transition probabilities. Some

consequences are also proved
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1. INTRODUCTION. .

Let z1, zo, ... be a homogeneous Markov process with an arbitrary set of states X, defined by the
transition probability function P(£, A), £ € X, A € Qx (o-algebra of subsets of X), and the initial
distribution:

P(z; € A) =n(A), AeQyx.

Suppose that P(.,.) satisfies the following condition of uniform ergodicity:

€7"€X,A€8‘X

It is well known that (see [13]) if (1.1) is fulfilled, then a stationary distribution P(A), A € Qx exists.
Let

F©) = (/&) /(8) »

where f,(.), (i = 1, k) are real Q'x-measurable functions defined on X. Without loss of generality, in the
next we shall suppose that

X

[ rmpan=o, i=TF
Suppose that the matrix A = ||a,]|['1°, where

5 = Ep[f(@)fy(@)] + ) B [f.(@)fy@r1)] + Y Eplfy (@) (@)
r=1

r=1
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is positive definite Let,

n+l

Z Bf(z,),  Pa(A)=P(S, € 4),

An(A) = Pn(A) - Q(A) ) A€ B P

where the matrix B is such that B'B = A7}, ®(.) is the standard normal measure in R*, and B is the
class of all Borel sets in R*.

In many articles (see for example, [2],[5],[6],[7], and [8]) uniform estimates (in particular, the
Berry-Essen bounds) are obtained for the quantity:

sup |Aq(4)], (1.2)
AeBf

under the condition that the transition probability function P(.,.) has a finite absolute moment of order
not less than three. (Here BY is the class of all convex measurable sets in ).
In the present work a uniform estimate is obtained for (1.2) without assuming the finiteness of:

ms = sup / )PP, d) .
e XJx

This estimate extends the results pertaining to the case of the existence of absolute moments for the
transition probabilities of order not less than the third for a sequence of random vectors that are either
independent and identically distributed (P(.,.) = P(.) = m(.)), or linked in a homogeneous Markov
chain (see, for example, [1], [19], and [20]).

Some other results, concerning (1.2), are also given.

We introduce the following "truncated" moments:

— 3 2
b= o, [ /X PP dn+ /7 /y F@l P(s,dn)] .
6 = /X F(©)IPe) /Y \Fn) | S(&,dm)] + /7 1F(©)|P(ae) /X F) 1| SE.dn)l
— /X 1F©)lm(de) ,

and put,
1

n

5

Ls, 27 Sup /I(an(n))l P(ﬁydn)+\/_/\r2 Sup / (6, f(m)I P(ﬁ,df/)]

Ls, = Z

=1

- O [/ 16 £(€))|P(d8) / 16, F)! 1S (&, dm)] +

+ /7 18: £(6))| P(de) /X \@;, Fe) 1S(E, dn)|] :

and,
_ Ly
Len= 7= 2N [ 160 10)@0).

where 8, v = 1,2, ..., k are orthonormal eigenvectors of A and /\?, are the corresponding eigenvalues,
Xo={e:1f@®I<Vn}, Xo=X\Xa,

|S(., A)| is the complete variation of the measure,
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S(,A) =) (P"(,A)-P(A), A€y
r=1
and P"/(.,.) is the transition probability function after r-steps The measure S(., A), A € S exists in
accordance with condition (1 1)
2. FORMULATION OF THE RESULTS
THEOREM 1. The inequality

1 2 n

sup  [Ln(A)] < Clh,p)| Lo, + Lo, + Lo + (— L2 p) } . @1
k 3 3

A€ By

holds true. Where here and in what follows, C(.) denote a positive constant, not the same at different
places, which depends only on the arguments in the parentheses

Asit is shown in [1], [11], and [15] the expression L, characterizes the corresponding result in the
case where summation of independent identically distributed random vectors (p(.,.) = p(.) = w(.)) is
considered. The expression L characterizes, in some sense, the dependence structure of the random

vectors

flx),  flz), .. 22

(Ls, = 0 for independent identically distributed random vectors).
REMARK. If g(z) is an increasing function, with positive argument, defined on ®*, such that gﬁ

is non-decreasing, and lim g(z) = oo, and if
my = sup [ £ a(f ) PE dn) < oo,
te X Jx

then (2.1) remains true, but with the replacement of (L, + Ls,) by (L, + Q,)/g(k /1), where

k

Ly=Y (A" +A7%) sup / (6., f()I*9(1(8,, F))P (£, dn),  and
r=1 £ € X X

k

Q

=1

k
3 [ /X (6., £(6))|P(d€) /X 16,0 F)a(1 8,0 F)1) ISCE, di)]

® =1

+/ I(G;,f(€))ly(|(0nf(E))I)P(dﬁ)/ 1(6;, F(m))] IS(&dn)I] -
X X

If 7(.) = p(.), then the sequence (2.2) forms a stationary sequence of random vectors and in this
case Theorem 1 has the following simple form:
THEOREM 2. If 7(.) = p(.), then

sup |Aq(A)| < C(k,p)[Lg, + Le,] - 23)
Ae Bf

Repeating the arguments given in [3], and [4], one can see that the estimate (2.3) has a universal
character. In particular, from (2.3) one can derive an analogy of the generalized Berry-Esseen inequality
adduced in [12], and [16] for independent random vectors.

The next result follows from Theorem 1.

THEOREM 3. If

ma = sup [ 1P dn) < o,
te X Jx

then the CLT holds for the sequence (2.2), i.e. for any initial distribution (.):
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sup  [Da(A) -0
Ae B}
3.

AUXILIARY RESULTS
Assume that

as

A=J
where J is the k-dimensional unit matrix Consequently B = J Assume also that

B

(ERY]
6, < C(k,p) . 32
ﬁ +6, < C(k,p) (32
Through the proof of Theorem 1, it is shown that assumptions (3.1) and (3.2) do not bound the
generality
Let
fn() = (fnl(')v fn?(')V"" fnk())
_ [0, QIS Vn
0, IfOI>y/n
_ 1 n+1 _
Sn=—=) fuld), U (t)=E|et)].
ﬁ r=1 [ ]
Put
N
t| = 1, t 3 d Tn = -
= max(L,l), an i
where
B, =20M%(p)B,, and  M(p)=(9+12p)/(1—p).
LEMMA 3.1. For |t| < T,
t
o)~ 7| < Okp) | | L + 8 | max(lt 14°) + L |40
vn '
1 2 \" [
DB.(=+2p)] —=.
rowa (5 +30) I
PROOF. Put
o™ =

1y

Eylfn@) @) + 3 Byl @) fay @) — Byl (@) foy(ran)]
r=1

+ D Byl fny(@1) fas(@rs1) = Eplfy(@1) fra(@ra)]] -
r=1
Itis clear that, fori =1k, r=1,2, ...

Therefore,

Ep[fni(zl)] = Ep[fm(xr+l)] .

(33)
B, fon(z)]] = | [ @)

B,
S%.

(34
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Similarly, it is easy to see that, forany i,7 = 1,k

Bn

|Eplfu(@0)fny(@0)] = Bylfi(1)fy(21)]] < N (35)
Further, using (3 3), for any 7 and 7
| Bl @) @) = By £ @) foy(@ra1) = Eplfus @ Bylf e 1)) |
< [ ir@npag /X F IV, dn)
+ /X 1@IPe) [ 11mivite,dn 36)

where V;(z,.) is the complete variation of the measure (P (z,.) — P(.)) From (3.4)-(3 6), it follows
that

oV 6, < C(p)(—ﬁ\/"—; +6n) 37

where 6, is the kronker's symbol
Consider the Sy -measurable function

fin(@ = fi(®) = fu(2), z€X,

and let m, = E,[f,(z1)],

a7 = Ep[(fu(z1) = ma)’] + 2 (Bl fu(m1) fi(zri1)] — m2]
r=1

and

Y= sup / \fu(n) — me* P(€, d) .
teXJx

It is easy to see that

k
B,
el < Mol |Eplfny ()] < lEI2 ¢3)
=1
and that
o} = (t,ont) , 39
where
_|lm]|*
g, = IU'J .

It follows from (3.1) and (3.7)-(3.9) that,

2 2 B, 2
—|t°| < C(k, —= + 6, | |t°, .
lo? — 14] < ©( p>(ﬁ+ )ll (3.10)
Consider now the sum of one-dimensional random variables
N 1 n+1
S, =

oo 2 Uilar) = me)
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and put
o

7, T) = E(e”g") , T, =
( 100M3(p)v,

According to the results of [14], we have for |7| < T,

27: ~&? 29, "
_[ o (ol 1)+ \/—lTlJe + 3f||( ) . e

Wn(r) —ei”

where
muy = /X 1)l (de) .

In accordance with (3.2) and (3.10), we have

2
lof — 1t1°] < 1721t ,
and consequently,

0,2
1/2< W <3/2, (3.12)

As a consequence of (3.8), it is easy to see that
7 < Slt°B, - (.13)

On putting (see [14]) B, = 20M3(p)3,, we get from (3.12) and (3.13), that
o _ 100M%(p)y} _ 50B,lt]

T, dva S m

<1, for |t < \/_1—1=T,..
508,

It is not hard to see that
U, (t) = V™ (o)) (3.14)
From (3.11) and (3.14), on noticing that my; < [t|m, 1, and 7} /0? < 10+/2, it follows that

It

L 2 \"
[5off|t| +\/-m,,_1]e +20‘/_|t|< +3p) . (3.15)

Further, using (3.8), (3.10), and (3.12), consistent with (3.2), it is easy to see that

— e‘ﬁ"‘t_%"t

[er/inciet —e “‘|<[Klt|f+0<k (i 0 [ R

Finally, the assertion of the lemma follows from (3.15) and (3.16).

Through the proof of Theorem 1, we shall need estimates for the derivatives of the characteristic
function ¥,,(.). Let us fix a direction @ and let t; be the projection onto 6.

LEMMA 3.2. a. Forany v > 0, and for [t| < Co(k, p)T/?

v
m7rl

5z (90— 1) | < 0 p,u)[m" R ( N f>+%(1/3+2/3p)"ltl]

sup
0

where
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V" = max(2v,v + 3), m) = sup /If(ﬂ)”)(ﬁv dn) .
e XJx

b Foranyv > 0, and for |t| < T,

2

9 Vet | 2 \"
ot \I/n(t)‘ < c(kpv) {ltl \/_ ]t[( + SP) }

The proof of this lemma is easily obtained by repeating, word for word, the arguments of the proof of
Lemma 2 1 in [8] with the use of the general spectral theory of linear operators acting in the Banach
space of all bounded functions with the uniform norm Through the proof of part b, Lemma 3 of Chapter
6in [16] is used

Let

sup
0

A(A) = ®(A) - P(A), AeBF,
where P(.) is a distribution function in ®*. Let r{") be such a vector that
Pl(A)=PnYVeA), ad PV >h)<xh7",
where x, = x; (k) depends only on k.
Forany T > 0, put
M =11y, P(A)=PHDeA), and Ap(A)=(LxPp)(A)
where * denotes the composition operation.

The following lemma is proved in [18] and [20).
LEMMA 3.3, Forany T >0

12
sup |An(A) <2 sup |Arp(A)| + \/‘—[ ’;‘ K2
Ae B} Ae BF 2
If 7V has the distribution with density
2r
u(@) = ak, [Jipa(l/20) 122] (3.17)

where Jio(.) is the Bessel function of order k/2, the constant oy, is such that f# u(z)dr =1, and ris
a positive integer, then forally < k + ¢
-1

E[lnV)"] <x,(k,q) <o, if r>2+m (3.18)

and for [t| > 1
i(t,z) p/ _
e P(dr) =0. 3.19
[ e P(an (3.19)

4. PROOFS OF THE THEOREMS
PROOF OF THEOREM 1. Let

P.(A)=P@,cA), ad DN, (A)=P,(A)-®A), AecB.

It is not difficult to see that for any A € B*

n+l

|P.(4) = Pa(A)| < Y P(If(.) > /n) . @1
r=1
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Further

P(If(@)| > V) =/Y ) < "\’/7-: “42)

and forr > 2

P(f(z,)] > /n) =/ P (g, X, )n(dz) < supP<'-”(x,7 )< supP(a:, X,)

< (fgf wp [ 1sPPE.an < (\/ﬁ:) . @43
It follows from (4 1)-(4 3) that
IP.(4) < —ﬁf 44
Therefore, for any A € B*
8,

|Dn(A)] < [Ba(A)] + Tt

NI
Let T >0 and A,r(A) = (A, * P;)(A), where P} is the distribution with the density defined by
(3.17). 1t follows from Lemma 3.3 that

45)

up [Bu(A) <2 sup [Bur(d)] + S “6)
AeBf Ae B
Let
Vilt) = E[e‘('-"‘”>] .
Thus, from (3.18) and (3.19), we have V() = 0, for |t| > T, and forallv < k + ¢
sup g—VT(t) <E[T)]) < == C(k v) ) 4.7

Now, we put T' = T;, (defined in Lemma 3.1), and ¢ = 1. It is clear that the generalized measure Z,,,Tn
with the characteristic function

Wait) = (%0 - ) Vi )

satisfies all the conditions of Lemma 1 in [17]. Hence, from (4.7), for any 0 < v < oo, we have

il Fid 2
dt < C(T, m; U, (t) — e il ’dt 4.8
Lls ROy - CICRI (43)
where
<INy
C(Tn,vo) =Y ( )o(u, k)/TY .
v=0 Yo

In accordance with (3.2) it follows from Lemmas 3.1 and 3.2, that forany v < k + 1

4
sup / Bn
0 JIH<T,

(’?t"( n(t)—e‘altl))dtSC(k,p,u)[\/_+5 4 \/7_1 +(§+§p>n]’ “)

It follows from (4.9), on using Lemma 1 of [17], that
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- ﬁn Mx 1 l g "
As:;;gklan_n(A)lSC(k,p)[%Mﬁ /n +(2+3p) ] (410)

Theorem 1 follows from (4 5), (4 6), and (4 10) if conditions (3 1) and (3 2) are satisfied

It is clear that the generality of Theorem 1 is not lost by condition (3 2) because in the opposite
case the obtained estimate is trivial Finally the proof that condition (3 1) is nonessential is obtained by
repeating, word-for-word, the corresponding part in the proof of Theorem 3 1, p. 108 in [19].

PROOF OF THEOREM 2. The proof of Theorem 2 goes along the lines of the proof of
Theorem 1, where the condition 7(.) = P(.) is taken into account.

PROOF OF THEOREM 3. It suffices to prove Theorem 3 under the condition 7(.) = P(.) (the
general case reduces to this partial one) By Theorem 1 it suffices to show that

Lg, +Ls,—0 as n—oo. @11
Since my < oo, then

sip [ 10 SmFPEdn 0, s noo.
te X JX.,
It is not hard to see that
1 3 1 2
7 /. 16 S PAE dn) < C(k)[% AR

9., 2p(¢,d ‘
+/{n~|f(n)|>¢/;}|( Fm)I"PE '7)]

Hence,
Lg -0, as n— 00 . (4.12)

Also, for L , one can show, using Holder's inequality, that

4 k. | \ 1/2 \ 1/2
) {[ [1eserpas] | [ i@, sonipean]
172 1/2
+ [ [ |(ot,f<§))|2P<ds>] [ [ 16, 10 P dn)] } . @)
It is clear from (4.13) that
Ls, — 0, as n—00. 4.149)

Finally, from (4.12) and (4.14), we get the assertion of Theorem 3.
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