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1. INTRODUCTION.
An interesting fact about H.*-algebras [1] is that it can be used to generalize many classical

theorems. In particular, positive H*-algebra valued measures behave very much like (positive)
scalar measures. There is also a more general theory of monotone and convex functions, and
there is a natural generalization of the Stieltjes integral. The present paper is devoted to these
theories. A biproduct is an example of a positive vector measure. It is constructed using a

monotone H*-algebra valued function.

2. PRELIMINARIES.
H*-algebras were introduced by W. Ambrose in the forties [1]. They can be used to char-

acterize Hilbert-Schmidt operators on a Hilbert space. A proper H*-algebra is a semi-simple
Sanach *-algebra A whose norm is a Hilbert space norm (i.e., it is defined in terms of a scalar
product (,), x 112= (x, x), x E A) such that its involution x x* satisfies the condition
(xy, z) (y, x’z) (x, zy*) for all x, y, z E A. Two important examples of an H*-algebra are
the class (ac) of Hilbert-Schmidt operators and the group-algebra L2 (G), where G is a com-
pact group. Further examples could be constructed by taking all possible direct sums of given
H -algebras.

The trace-class rA of an H*-algebra A is defined as the set of all products xy of members
of A. It corresponds to the trace-class (re) [8] of operators (the class of nuclear operators) in the
theory of Hilbert-Schmidt operators. It is a Banach algebra with respect to some norm r( which
is related to the norm of A by the equality r(a*a) =11 a 2, a

_
A. There is a natural order _<

defined on rA (and A)" a <_ b if 0 _< (bx, x) -(ax, x) for all x A (a, b e rA) (it corresponds
to the ordering by the cone of the positive operators for the case of a trace-class (rc) of Schatten
[8]). The algebra rA has a trace tr (a positive linear functional) which has the property that
tra= r(a) if a _> 0 and tr(zy)= tr(yx) (y*, x) for all x, y A.

The norm r( of rA is additive on the set of positive members of rA if a, b _> 0 then
r(a + b) tr (a + b) =tra + tr b r(a) + r(b) (it follows that r(a) <_ r(b) if 0 _< a _< b).
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An important property of rA is the fact that it is monotone complete in the sense of Wright

[10]: if E is a directed upward (V-’, y E E 3 z E E such that x, y < z) bounded above (3 m rA
such that :r _< m for all x E) subset of rA then 3 7n0 rA such that m0 lubE. One can

also show [7, Lemma 2] that in this case

lub r(mo x) O.

3. MONOTONE FUNCTIONS.
There is no simple characterization of the class of flmctions which are differences of increasing

trace-class valued functions (unlike in the case of real valued functions). For this reason we shall
restrict our theory to the case of monotone functions.

Let A be a proper H*-algebra and let rA be its trace-class. An increasing rA-valued function

z(t) on the real line R is defined in the obvious way by the condition "t < s implies z(t) z(s)
(0 _< (x(s)a, a) (x(t)a, a) for all a e A)." Decreasing functions are defined similarly.

THEOREM 1. For each increasing rA-valued function x(t) there are increasing functions

z(t)+ and x(t)- such that x(t)- lub{x(s)’s < t} and x(t)+ glb{x(s)" s > t}. It is also true

that
lim r(x(s) x(t)-) 0

and
lim r(x(t)+ z(s)) O.

Similar statements hold for decreasing rA-valued functions.
PROOF. This is a consequence of Lemma 1 and Lemma 2 of [7]: for a fixed R the set

{x(s) s < t} is directed upward, hence it has a least upper bound x(t)- which is also the left
limit of x(s) with respect to the norm of rA.

THEOREM 2. Let x(t) be an increasing rA-valued function defined on R. For each R
let j(t) x(t)+ x(t)-. Then the set D {t e R’j(t) # 0} is countable (note that D is the set
of discontinuities of x(t)).

PROOF. We use the fact that the norm r of rA is additive on positive members of rA. Let
a and be any two real numbers with a </ and let t < t < < t, be some points in the
open interval (a, ).
Then

rj(t) r(x(t)+ x(t)-) <_ r(x(t)+ x(t_,)+)
k--1 k=l k--1

((.)+ (0)+) < ((Z) ())

(here to is any point between a and t
from which it follows that

(J()) < ((Z) ()).
k--1

From this we conclude that for each positive integer p there is only a finite number of points in
< r(j(t)). Consequently the set D must be countable.(a, Z) such that

COROLLARY. Every monotone rA-valued function is continuous almost everywhere.
In analogy with [2, p. 14] we define a rA-valued saltus function in more or less the same

fashion. Let {a } and {b be some fixed sequences of positive members of rA such that

k k

and let T {t} be a fixed countable set of distinct real numbers. The corresponding saltus
function a(t) is defined by the formula:
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It is easy to see that the function a(t) is inonotone, continuous for each tk and a(tk)+ -a(tk)
bk, a(tk) a(tk)- ak for each tk in the set T. The next theorem is a generalization of a well

known theorem about increasing real valued functions.

THEOREM 3. Each increasing rA-valued function x(t) on R can be represented as a sum

x(t) c(t) + a(t) of a continuous increasing function c(t) and a saltus function a(t). If x(t) is

right (left) continuous then a(t) is also right (left) continuous.

PROOF. The proof is essentially the same as in the case of real valued monotone functions

(e.g. [2, pp. 14-15] ). We included it for the benefit of those who are not familiar with the
classical theory. For each R define a(t) z(t) x(t)-, b(t) z(t)+ z(t) and let T
{t R" both a(t) and b(t) are non-zeros }. Then T is countable, and so it can be written as a

sequence, T {tk} (where k runs through natural numbers).
Define:

and
c(t) x(t) o(t).

Let us show that c(t) is right continuous. For any > we have (each t, belongs to T):

() (t) x() (t) (() o(t)) () (t) (t) (t)
t<t<_s

Thus:

t<t <_s t<t <s

Now we use the fact that

k

-(b(t,)) < o.
k

For any > 0 we can select k0 so that

and

("()) <
k>_ko

r(b(t)) < .
kko

if s < ti and so that the interval It + 8]If we now select t > 0 so that r(z(s) z(t)+) < i
would exclude the points tl, t2, tk0, then 0 < s < (5 would imply r(c(s) c(t)) < . Left
continuity of c(t) is established in a similar fashion.

4. STIELTJES INTEGRAL.
Let u be a positive rA-valued Borel measure on the real line (# is a countably additive

positive rA-valued set function defined on the a-algebra [3] /3 generated by open sets of real
numbers). For each real define x(t) #[-cx), t) p{s real s < t}. Then x(t) is an increasing
positive left continuous rA-valued function defined on R.

The converse is also true. Let x(t) be as in the preceding paragraph. Let f(t) be a bounded
real valued function defined on some interval [a,/]. We can now apply the classical procedure to
define the Stieltjes integral

a
y(t) (t).dz
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Let ^ {a to < tl < t < < tn fl} be a partition of [a, fl], and let m, glb{f(t)" t,-1 <_
< t,}, M, h,b{f(t)’t,_ < <_ t,} for 1, 2 n. We define

s(A) m,Ax(t,), S(^)= M, Ax(t,)
=1 =1

where Ax(t,) x(t,) x(t,_, ). Then the set F, of all lower sums s(A) is an upward directed set,
bounded above by a member of rA, and the set F2 of all upper sums S(A) is a bounded below,
by a member of rA, downward directed set (it is easy to verify that s(A1) < S(A2) for any 2

partitions A1, A of [a, /Y] (e.g. one can modify the technique of [4, pp. 105-107]).
Thus there are members f_ f(t)dx(t) and f- f(t)dx(t) of rA such that f_ f(t)dx(t)

lubF and f- f(t)dx(t) glbF2. It is always true that f_ f(t)dx(t) < f- f(t)dx(t).
We can define f(t) to be Stieltjes integrable if f_ f(t)dx(t) f- f(t)dx(t), and in which

case we denote the common value by

It is not difficult to see that a real valued continuous function is Stieltjes integrable.
Let us consider the positive linear functional

I(f) f(t) dx(t) f(t) dx(t)

defined on the class L of all continuous real valued functions, each vanishing outside of some

(finite) interval included in [a,/3] (in which case the value of the integral is independent of a

particular choice of a and fl). Applying to I the Daniell theory, developed in [7] we obtain a

positive Borel measure/z on R such that /[s, t) /{r s < r < t} x(t) x(s) for all s,
in R. From this it is not difficult to see that each interval of the form [-oo, t) is summable and

I[-oo, t) x(t) + a for some positive a erA.
We summarize the above theory in the next theorem.
THEOREM 4. For each increasing positive left continuous rA-valued function x(t) on R

so that lim x(t) 0 there exists a positive regular rA-valued Borel measure/z on R such that

lz[-cx, t) x(t) for each R. The integral f f(t)d#(t) (corresponding to the measure/) is
identical to the Stieltjes integral

f(t) dx(t)

on the set of continuous real vued functions f(t) vanishing outside of some interval [a, ] (for
each choice of the interval [a, ]).
(The integral f y(t) d(t) above is considered in the same sense as the integral f/" d, in Theorem
4 in [7]).
5. EXAMPLES.

A vA-valued saltus function considered above constitutes an example of a discrete monotone
function. Now we shall discuss continuous (monotone) functions.

Let f(t) be a rA-valued function such that

f’(t) lira h-(f(t + h)- f(t))
h--*O

exists for each and is positive. To be specific let ao, a an be positive members of rA and
let

Then it is easy to see that

f(t) .,t
k----O

f’(t) +
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for each e R, and the last expression is everywhere positive in the sense that (ff(t)a, a) >_ 0 for
each a E A (note that

(f’(t)a, a) tk(2/,’ + 1)(a,a, a)).
k--I

But it is also easy to see that 7(f(t)a, a)= (f’(t)a, a). From this we may conclude that f(f) is
an increasing function.

A decreasing continuous function is also easy to construct.

6. CONVEX FUNCTIONS.
Also there is a natural generalization of the theory of convex functions, as it was developed,

for example, on pages 113-115 of the third edition of Royden’s book [3]. Let A and rA be as

above. One can define a rA-valued convex function X(t) the same way [3, page 113], using the
inequality "X(At + (1 A)s) _< AX(t) + (1 A)X(s), 0 _< A _< 1". It is obvious, that for the case
when each X(t) is self-adjoint, this definition is equivalent to stating that "a rA-valued function
X(t) is convex if for each a E A the scalar function oa(t) (X(t)a, a) is real valued and convex

(in the sense of, say, Royden [3, p. 113])."
Below we shall assume that X(t)* X(t) for each t.
The function f(t) in the above Example (in Section 5) is convex on [0, oo), since (f"(t)a, a) >_

0 for all a A and > 0 (one can apply 19. Corollary on page 115 of [3] here).
It turns out that most of the properties of convex flmctions stated on pages 113-115 of [3]

are valid also for rA-valued convex function (one should remark here that the notion of derivates,
defined on p. 99 of [3], are not very useful in our case so we shall not attempt to generalize 18.
Proposition on page 114 of [3]).

Some of these properties could be derived from the classical statements (e.g., pp. 113-115 of
[3]), the others need to be verified directly.

Let us use the notation Q(t s) x(s)-x(,)
7:-i where s and are some real numbers and X(

is a fixed rA-valued function defined on some open interval (c,/3) (where a and/3 are either finite
real numbers or :koo).

LEMMA. If X( is convex and _< t’ < s, < s < s’, then Q(t, s) < Q(t’, s’).
PROOF. This is a consequence of 16. Lemma on page 113 of [3]. For each a A we

apply this lemma to the scalar function 0(t) (X(t)a, a) in order to arrive at the inequality
"(O(t, s)a, a) <_ O(t,s’)a, a)."

THEOREM 5. If X(t) is convex, then its right and left derivatives X$(t) and X_(t) exist
for each in (a,/3) and are increasing functions. It follows that X(t) is continuous. Moreover,
it is also true that X[(t) <_ X(t) for each ( (a,/3). If X(t) is increasing, then it is absolutely
continuous at each closed subinterval [a’,/3] of (a,/3).

PROOF. Existence of X and X

_
is a consequence of the above Lemma and monotone

completeness (Corollary 2 on page 878 in [7]) (see also the last paragraph in Section 2 above). If
to (a,/3) is fixed, then the se {Q(t0, s) (a, 3)} is a directed downward set, bounded below
by some member Q(t, s) of rA. One can now use Corollary 1 on page 878 of [7]. Continuity
of X(t) could be derived as in the classical case (right differentiability implies right continuity, a
function is continuous if it is both right and left continuous).

Now assume that X(t) increases. In this case each Q(t, ) is positive. If [a,/3] c (a, fl),
one can select a, fla so that/3 < c </3 </3. Then we have (because of the above Lemma):
0 < n(t, s) < D(a,/31) for all t, s E [a,/3*] with < s. Since the norm v is additive on positive
members of vA, we have rD(t, s) _< M, where M rD(a, 13 ). It follows that r(X(s) X(t)) <
i(s t) i ]s for all s, [a,/3] with < s. Absolute continuity of X( is now easy
to establish: if {[t,, s,]} 1, n are nonoverlapping intervals in [a’,/3’1, then

Z r(X(s,) X(t,) <_ r(X(s,) X(t )) <_ M sn t [=
=1

=MZ(si-t,)=MZls,-t, I.
--1 t--1
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THEOREM 6. If X(t) is twice differentiable and z"(t) > O, then X( is convex.

One can use this theorem to construct convex fimcti()ns. If a a, E rA are positive,

then X(t) Z aktk is convex for > 0.

Jensen Inequality is also valid for our case, as it is stated in the next theorem.
THEOREM 7’. Let X(u) be a rA-valued convex function, defined for each real u and let

f(t) be a real valued measurable function, finite everywhere on (-cx, o). Assume that both f(t)
and X(y(t)) are summable on the interval [0, 1]. Then

X f(t)dt < X(f(t))dt.

that
PROOF. Let u0, u and ul be such that u0 < u < ul. Then it follows from above Lemma

Q(uo, u _< Q(,o, u ).

This inequality can be written as

x(,o) + (, ,,o)Q(,o, ,) _< x(u).

Taking limit as u approaches u0 we arrive at the inequality

X(uo) + (u, -uo)x.(uo)_< x(,)

Also, considering u < u < u0 we can arrive, in a similar fashion, at the inequality:

X(o) + (,, o)X/(o) < x(,).

It follows that
() + ( )x’_() _< ()

or d (ic X’() < X().
If we let a f f(t), m X’..(uo) and u f(t), we arrive at the inequality:

m(f(t) t) + X(a) < X(f(t)).

Taking definite (Bochner) interal on both sides we obtain:

(/0 /0 )/0 /0m f(t)dt a dt + X(a)dt < X(f(t))dt

or

(/0 )/0X f(t)dt <_ X(f(t))dt.

It is appropriate to remark that we need to assume that X(f(t)) is summable over [0, 1], since in
the theory of Bochner integrals the idea of an integral assuming an infinite value does not make
sense.

This was not the case for scalar functions, considered by Royden in [3]. The following example
may illustrate the point.

Let f(t) t-1/2 and X(u) u. Then X( is convex, f(t) is summable over [0, 1], but

g(t) X(f(H))is not (f X(y(t))dt fo - oo). However, the Jensen inequality is still

valid. Royden did not have to assume that f: (f(t)dt) is finite.
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