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ABSTRACT. Let fe H(B,) f¥ denotes the [th fractional derivative of f If
fi8l € AP92(B,), we show that

M EP< = +2 = 6 then f € A*2(By),and | fll,eo < O 7| o= 55,t= %
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) Iff==t+2 then f € B(By)and |fll < C ¥
pg,a

() If5> =t + 2 then fe€ A p-et1_z(Bn) especially If 5=1 then
I£lls, o, < c|fu |, 4.0 Where By is the unit ball of C"
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Let Q be a bounded symmetric domain in the complex vector space C", 0 € 2, with Bergman-
Silov boundary b,I" the group of holomorphic automorphisms of Q and Iy its isotropy group. It is
known that Q is circular and star-shaped with respect to o and b is circular. The group Iy is transitive
on b and b has a unique normalized I'p-invariant measure o with o(b) = 1. Hua [2] constructed by
group representation theory a system {¢x,} of homogeneous polynomials, k=0, 1,..,
v=1,..,mg,mg = ("F7!), complete and orthogonal on Q and orthonormal on b.

By H(f2) we denote the class of all holomorphic functions on Q. Every f € H(Q) has a series
expansion

16) = N anbula),  aw=lin [ [6)F@ do©) ©
kv =i Jb

o0 Mk
where > =) Y and the convergence is uniform on a compact subset of 2.
kv k=0 v=1

Let f € H(Q) with the expansion (0) and 8 > 0. The Sth fractional derivatives of f are defined,
respectively, by r
18] — M Pro(z)
fP(2) ; l"((lc+1)) Ay Pru(2
'k+1
bj =) T WPk(2)
15)(2) %;I‘(k+1+ﬁ)a" kv(2
It is known that £, fi5 € H() and
oL [ o e
R R m

Let f € H(Q). It will be said that f belongs to the Bergman spaces A?9*(2),0 < p,g < 00,a> —1
if

(R a=reMr prar)’,  p<oo

sup  (1—r)eMy(r,f), p=o©
0<r<l1

”f"p'q,a =

is finite, where
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Aunn=(luumwww), 0<g<oo
and
Moo(r’ f) = sup If(T£)|
Eeb

see [1,3,5,6,7] for more on AP9*(Q2) For 0 < p < oo, let AP(Q2)denote APP°(Q) (see [10,12]), H?(Q)
denote AP0(Q) (see [9])

Let B, denote the unit ballin C™ A function f € H(B,) is called a Bloch function, that is
f € B(B,),if ([8,11])

Iflly =sup (1—[2])If"(2)] < oo
B

z € b,
For 0 < a < oo, the definition of Lipschitz space A ,(B,) can be found in [4, §8 8]

In [10] and [12], Watanable and Stojan considered the problem If f' € A?(D) (D is the unit disc
of C'), then ¢ = ? such that f € A9(D) In this paper we consider and solve the same problem in
AP'Q'O (Q)

The main results of this paper are the following
THEOREM 1. Let 0<pg<oco,a> —1,0<f<é< et 42 if flll € AP92(Q) and

Fll(re) = 0(“ £, o - r)"b), then feA*e(@Q) and ([ fl,., <ClIFP, .. where

THEOREM 2. Let0 < p,g < 00, > — 1,0 < < oo, fBi € AP92(B,).
M A<= 42 =5 then f € A*(B,), and ||fl,,, < c“ f“”“ ,where s, ¢ are the
same as above pae
) Iff= =t + 2 then f € B(B,) and |Ifl; < C||£*|
p.g.@

() IfB > =t 42 then f € A y_en_a(By), especially If 5 = 1, then
P q
11, oy < CNFM g

REMARK. (i) Theorem 2(I) (p = g,a = 0,8 = n = 1) extends the results of Watanable's and
Stojan's (ii) Theorem 1 (p = 00) extends the results of Shi's ([9]) and Lou's ([6,7])
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