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1. INTRODUCTION.
A regular moment functional (Chihara [7], Chap I) is a complex linear map L: of the space of

complex polynomials into the field of complex numbers for which there is a system { P,(x) n >_ O}
of monic polynomials determined by a recurrence relation

xP.(x) P.+,(x) + B,.,P.(x) + C,.,P._,(x), n > O, (1.1)

with P_,(x) O, Po(x) 1 and

such that

and, with

that

C,+, # O, n _> O, (1.2)

L:(1) (Po(X))- 1; f_.(P,(x)) O, n >_ 1.

A0 1; A, C,.-.C,, n_> 1,

(1.a)

f(Pn(x).Pm(x) An6mn, m,n >_ 0 (1.5)

Observe that A,, # 0, n _> 0. The system {P,,(x)} is uniquely determined by f, and because

of (1.5), it is called the monic orthogonal system of f. Conversely (Chihara [7], Chap. I), if
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{Pn(x)} is determined by a recurrence relation (1.1) satisfying (1.2), and if : is defined through

(1.3) and linear extension, Z: is regular and {Pn(z)}is its monic orthogonal polynomial system.

The functional 2 is called the moment functional of P,(z)}.
If the recurrence relation (1.1) is bounded, i.e., if there is a constant M > 0 such that

M M
IB,-,I _< ---, IC,.,+, I_< n _> O, (1.6)

and if (1-2) holds, the continued fraction (Wall [16], Chap. V)

1 C, C2
Ix B0 Iz B, Ix B

(1.7)

is positive, then writing

1 / X(z)P(z) dz, (1.8)(P(x))
c

for any positively oriented contour of [z[ > M enclosing z 0. This is a very useful representation

of .
If a regular moment functional is positive (Chihara [7], Chap. I) i.e., if B,, C,, in (1-1) are

real numbers and

C,,+1 > 0, n > 0, (1.9)

then (Chihara [7], Chap. II) a positive measure # on the real line can be found such that

r_.(P(x)) =/+_ P(x) d#(x). (l.10)

If in addition (1.6) holds, # is unique, Supp# C_ [-M,M] and (1.7) converges to X(z) on compact

subsets of C- [-M,M]. In practice, B,,, C,, in (1.1) usuMly depend on some parameters,

a, , $,.... In the classical theory of orthogonal polynomials only the positive case is dealt with,
which generally imposes strong restrictions on the ranges of these parameters in order to ensure

that (1.8) holds. For many examples of how/ can be explicitely determined in such circumstances,

see Askey and Ismail [1].
If (1.9) does not hold, representation (1.10) of : is out of the question. However, if (1.2) and

(1.6) are still valid, which usually happens under less restrictive assumptions on the parameters B,
and C,, representation (1.8) still holds, and can be used to derive other types of representations

of :. Among those, distributional representations are likely to be the most useful. For example,

if a polynomial q(x) a(x al)’l(x a2)’.. .(x a,)’’’ with real roots can be found such

that the functional L q(x), defined by

bl(P(x)) .(q(x)P(x))

(P(x)) T. q(x)
q(x) ]

we obtain, by means of the partial fraction decomposition

1 + R()q(x)
=’

(I.II)

(1.12)

(1.13)

of the system {P,,(x)} converges uniformly on Izl > M’, for M’ > M, to a limit X(z), which

is an analytic function on [z[ > M. Furthermore, if : is the moment functional of {P,,(z)}, then

(Charris and Soriano [6], Ismail teal. [8])
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(R,,,(.r) a p()lyn()mial) and (1.8), that if 7, is the positive measure representing U then

(P(x))
2 ( -%

(1.14)

is, siIIc

dv,-k P(x)(x-%)v]o (PJ k)! dx,-k q(x) (%)’ (1.15)

a representation of by distributions supported by the real line.

The above argument provides an alternative approach to that of Krall [9] and Morton d
Krall [10] to establish distributional representations of regular functionals, and can be applied to

systems, such as the Pollaczek polynomials, that fall outside the scope of Krall [9] and Morton
and Krall [10].

The aim of this paper is in fact to establish such a representation for the moment functional

of the general Pollaczek polynomials (Section 2). To this purpose we recall some properties of the

funtional q(x) defined by (1.11). We follow Belmehdi [3], where the history of this subject
is briefly reviewed. We restrict ourselves to the case of q(x) a(x- a0)(x- aa), and sume

that is regular with monic orthogonal system {Pn(x)} determined by (1.1). For n 0, let

P.(-0) P.+,(,0)
p.(,,) p.+(,,)

P.(-0) P.+,(-0)
P’.(-0) P.’+,(-0)

Observe that Ao o o if ao # ai, Ao 1 if ao a. Also let

a0 a,. (1.16)

P.-, (,o) P.+, (,o)
Pn-1 (O’l) Pn+ (O’l)

O 01; D, P.-, (-o) P.+,(-0)
Pn_l(aO) P’+1(oi a0 a. (1.17)

Then (Belmehdi [3])
LEMMA 1. The functional/d is regular if and only if A, 0 for all n _> 0. If such is the
case and {Q,(x)} is the monic system of orthogonal polynomials for/d, and if a is so chosen that

(q(x)) 1 (i.e., L/(ll 1), then {Q,(x)} satisfies the recurrence relation

xQ,(z) Q,+,(z) + [,Q,(z) + dnQn_l(X), n >_ O, (1.18)

with Q_l(X)= 0, Qo(x)= 1,

Dn Dn+lf3, B, + C,-- n>_O, (1.19)

and

Furthermore

so that a Ao/A1.
From (1.21) it follows that

/n+l (p2n(x) rl > 0

(1.20)

(1.21)

1
Z,n+

where A, (P2(z)), , bl(Q,(z)).

n.- " n > 0
Ao A. (1.22)
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2. THE MONIC POLLACZEK POLYNOMIALS.
Tins system, denoted with {P,(.r; a b)} is determined by (1.3) with P_l(x’,,b) 0, P(x;a, b)

1, and
b (n + 1)(n + 2A)B, C,+, t > 0. (2.1)

X+a+n 4(A+o+n)(A+a+n+l)"
For appropriate values of the parameters A, a, b (see Charris and Ismail [5]), the continued fracti(,n

limit function X(z) of these polynomials may have an infinite number of poles. This rather exotic

property makes it dicult to study the speciral measure or distributional representations of their

moment functional. The Pollaczek polynomials were introduced by F. Pollaczek [11-13]. See

also Szeg5 [15]. Singular cases of the Pollaczek polynomials are studied in Charris and Isnail

[5]. Special cases of the pollaczek polynomials are useful in the description of certain physical

phenomena (Bank and Ismail [2]).
We will assume a, b to be fixed throughout most arguments. So, we will only emphasize the

parameter A, and write P(x)instead P(x; a, b). We will assume hereafter that

2 and A 4- a are not integers _< 0. (2.2)

This guaranties that (1.2) holds. Observe that (1.9) demands in addition that A, a, b should be

real numbers and that

1
A>0and+a>0, or, -<<0and0<A+a+l<l (2.3)

The continued fraction limit function X.(z) of {P(x)} is (see Charris and Ismail [5])

x,(z) 2(A + a fl F ( A, + 1, 1

Bx \ -Bx + 1
(2.4)

where 2F is the hypergeometric function (Rainville [14], Chap.IV),

M 3 sup { b

n+A+a’
az+bA: -A +

(z 1)1/2

(n + 1)(n + 2A)
4(n + A + a)(n + A + a + 1)

az+bB =-A- z- 1)1/2’ (2.6)

and

a z + (z 1), z- (z 1) 1/2, (2.7)

with (z- 1) 1/2 denoting the branch of the square root of z 1 in C that behaves as z when

Clearly Mx < +oe, and it can be shown (see Charris and Ismail [5]) that (z2- 1) and

thus a, , A, B are analytic functions on C [- 1, 1], with branch discontinuities on [- 1, 1].
Alsoa+= 2z, a= 1, a-= 2(z-1)}, A+B =-2A and [(z)[ _< 1 _< [a(z)[, with

[(z)[ 1 [a(z)[ if d only if -1 z 1. From (2.4) and the above properties of a, B,

A, B it follows that Xx(z) is in fact analytic on C- [-1,1], except, perhaps, for simple poles

on the set

Zx {z e C- [-1, 11 IBm(z) n, n 0, 1,2,... } (2.8)

Since Bx(z) n implies that

[a2-(n+)2] x + 2abx + b + (n + )2 =0, (2.9)
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there are at most tw’() vnlues x-.r2 r2,,+ such that BA(.r)
For the branch of the square ro()t with - ve can write

and observe that x2, 1, x2,,+ -1 as n cxz.

The set Zx can be empty, finite or infinite countable with no limit points in C- [-1, 1],
according to the relative values of A, a, b. If A, a, b are real numbers and (2.3) holds, E is

positive and we have the representation (see Charris and Ismail [5])

Cx(P(x)) =/_+ P(z)w)(x)dz + Z Re(X,()P()
(,z

(2.11)

where

,(.) 2-, + - Ir(_B)l] -,,-’
r(2----( ( ) (2.2)

with F denoting the Gamma function (inville [14], Chap.II). Thus, if 6 is the Dirac measure

at <=0,

d, w,(x)dx + Res(X,<)(x )dx (2.13)

is the positive measure representing . Explicit formulae for Res(X, ) can be found in Charris

and Ismail [5]. We mention that provided (2.2) holds,

((p:(z)))= (2).,!
n _> 0, (2.14)

( + a).( +. + ).

as follows from (1.4) and (2.1).Here, (a),, defined by (a)0 1, (a), a and (a), a(a +
1)...a(a + n- 1) if n _> 2, is the Pochhammer symbol. We also mention that Euler’s transfor-

mation (Rainville [14], p.60) applied to (2.4) yields

X’(z)-’--2(A+a)--(1-2)2"x-’2F(B,x -B,2A’ +BaI2)1 (2.15)

Now let

where

2(A + a + 1) (1 x2)(-A,x)(-BA), A Z, (2.16)q),(x)
() + a)(2 + 1)

Z= {A 12A or A 4- a is an integer _< 0 (2.17)

Then q,x(x) is a polynomial. We have

LEMMA 2. Assume A, a, b are real numbers and that (2.2) and (2.3) hold. Then 11+
q),(x)E,x.
PROOF. Let Ax A, Bx B. Then Ax+ A- 1, Bx+ B- 1. Now, the poles, if any, of

X,x in B(z) 0, are wiped out in q,xX),; and since B:+ B 1, the poles of both X),+ and of

q)X), lie on Z+. Now assume B,x+(z,) m, so that B(zm) m + 1. Since

(A + a + 1)cq,x(x) -( + a)(2A)(2A + 1)



422 J. A. CHARRIS AND F. H. SORIANO

so that, in view of (2.15),

q’x(z)X(z)=2(A+a+l)-(1-)’+(2)(2+ 2F (2A,-B_B+ 1

a simple calculation shows that

Res(q,X:,z,,) -2(A + a + 1)(2A)m+(2A + m + 1)(m + 1)( 1 2rn)2A+ 2mrn+l
(m + 1)!(2A)(2A + 1) B’(z,)

-2(A + a + 1)(2A + 2),
(1 B2)2x+ /.+1

m! B’(z)

where ,, (z,) and B’(z,,) is the derivate of B(z) at z z,. This is precisely the residue

of X+l(z) at z z,. Thus, since obviously q(x)w(z) w+(x), the assertion follows from

(2.11).Vi
Now let

q,,(x) 4"(A + a + m)(1 x2)
(A + a)(2A)2,

(-Ax),(-B),, m :> 0, (2.18)

so that qx,o(x) 1 and q,x,(x) q,(x). Also q,,m(x) q,(x)q,x+l(x)..’q,x+,-(x), and is

therefore a polynomial. Induction on Lemma 2 shows that

COROLLARY 1. If A, a, b are real numbers and (2.2), (2.3) hold, then x+, q,,(z).
Now write

q(x) a(A)(x a0(A))(x al(A)), (2.19)

so that a(A) (-a)(A + a + 1) and a0(A) x0, al(A) x are as in (2.10). Let A,(A),
(2 + 1)

D(A) be A,, D in (1.16) and (1.17), respectively, with P(x)in the place of P,(x). A simple

calculation based on (1.22), (2.14) and Lemma 2.1 shows that

I
A(A) (2A)(2A + 1)(A + a) A > O, A + a > O, (2.20)

A0(A) 4"(A + a),(2A + a + 1),(a- A)"’

and all n > O.

Let Z be as in (2.17). Now we extend (2.20) to all not in Z.K]

LEMMA 3. Provided a, b are real numbers, (2.20) holds for Z.

PROOF. From (1.1) and (2.1) it follows that P(x) is a polynomial whose coefficients are rational

functions of A. Let r (ao(A)+ ha(A)) and a (aa(A)- do(A)), so that do(A) - + a,

c(A) r- a. Clearly r is a rational function of A. If a 0, i.e., if a0 a, A,(A) obviously

is a rational function of a. If a = 0, let /,(a) A,(- + a). Then /,(-a) -fi,,(a), so that

,(a) a,(a), where h,(x)is a polynomial whose coefficients are rational functions of A.

Thus A,(A)/A0(A) is, in any case, a rational function of A. Since also the right hand side of

(2.20) is a rational function of A, the uniqueness principle of analytic continuation shows that

(2.20) holds for all A not in Z.[]

COROLLARY 2. For A Z, A(A) 0 for all n >_ 0. Hence, Hx qx(z)x is a regular

moment functional for A Z.
Let/)(), (A) be the coefficients in the recurrence relation of the monic orthogonal system

{Q(x)} of/4, @ Z. From Lemma 2,

b ,+,(A) (n + 1)(n + 2A + 2)/),(A) -), + a + n + 1’ 4( + a + n + 1)(A + a + n + 2)
(2.21)
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for all n _> 0, provided A, a, b are real numbers and A > 0, A + a > 0. Since also D,(A)/A0(A)
is a rational function of A, (2.21) holds for all A Z. Thus QX(z) p_X+l(x), and

LEMMA4. ForAgZ, /4A =LA+I.
Induction gives

THEOREM 1. For A Z, /A+m q),,m(X)Lx for all m _> 0. Hence, if A, a, b are real numbers

and

A+m>OandA+a+m>O, or, -1/2<A+m<0and
0< A+a+m< 1, (2.22)

then qx,,.,(x)x is a positive moment functional.

Now write

qx,m(x) a(A)(z a,)m’(x a2)m: .(x ap)m’ (2.23)

with ml + rn2 +... + rnp 2m. From (1.14), (1.15) (2.23) and Theorem 1 we obtain

THEOREM 2. Assume A, a, b are real numbers and that 2A and A 4- a are not integers < 0.

Also assume that m >_ 0 is such that (2.22) holds and that

(A+j)2+b2>a2, j=0, 1, 2, m-1. (2.24)

Then, Z:x has the distributional representation

Z:x T1 / T2 (2.25)

where, for any test function on the real line,

qx,,,(x) (2.26)

with
1 /c qx,,.,(z)Xx(z)

Ask 27ri(m, k)! (z a.):
dz (2.27)

and C any positivily oriented closed contour in [z[ > M max{Mx, Mx+. }, and

T2() qa,(x) dlx+,-,(x), (2.28)

where

and #X+m is the positive measure representing Lx+,,. Both distributions T1 and T have compact

support on the real line and can act on polynomials.

REMARK 1. That T is a distribution follows from

2m

l,(x)l < CE sup I(k)(t)[, x E [-Mn+m, M+,I, (2.30)
k=O tEIR
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where C > 0 is a COllstant (independent of ). This is a consequence of the Taylor Remainder

theorem. For a description of #+,, (which may have an infinite number of real isolated mass

points), see Charris and Ismail [5]. We also observe that

Supp T a ap Supp T2 Supp (2.31)

REMARK 2. In (2.23),

for3 =0,1,...,m-!. Toseethis, letx2j, x2+1 be the roots of (1- x)(-A, + J )(-Bx + j) as

in (2.10). We observe that since (2.2) holds, x? 7 and x+l -1, 3 0, 1,...,m- 1. For
x xj, xj+a one of the possibilities A(x) j, A(x) -2A-3 holds, and similarly for B.
We intend to prove that if 3 7 k then xz,x2, x+l,x?+l are all distinct. By the symmetric

roles played by z2 and x+l and by A and B,, it is enough to prove that x2j 7 x, and for

this, that, under the assumptions x2 x, both choices A(x) 3 and A(xj) -2A- j

lead to a contradiction. So assume A(x2) j; since j 7 k then A:(x2) -2- k, so that

-2 j + k; this is contradictory. Now assume Ax(x) -2A- ; then Ax(x) k and

Bi(z2) Bi(z) -2A-k, so that -2 A(z2)+Bi(x2) -4-j-k and 2A --k;
also this is contradictory.

Hence

COROLLARY 3. Under the assumptions of the theorem, andifa

0, 1, 2, m-l, thenp= 2m andmk 1 for all k 1, 2, 2m. Furthermore, for any

test function

Tl(O) Z2’ A, T(x)(x ak) (ak) A, dz,
k=l

q,,,(x) (z--ak)
(2.32)

and Ta is a measure.

REMARK 3. For (2.24) to hold it is sufficient that Ibl >_ I1, If (2.24) fails, at least one of the

a, is not real, and representation (2.25) is not possible.

REMARK 4. If m 0 in (2.22), then T1 vanishes and T reduces to #),. A basic idea of our

approach has been to let the possibly infinite masses of ,x be absorbed by #),+,. Then we can

quote Charris and Ismail [5] for a closer exam of them.

REMARK 5. Now we observe that in spite of the apparent freedom of choice of m in Theorems

1 and 2, the distributional representation of/2 is unique, as far as only distributions with compact

support are taken into account. This follows from general results in the theory of representations

of distributions on the real line by analytic functions on 12- IR (Bremermann [4], Chap. 5). In
fact, if T is a distribution with compact support K on IR, the Cauchy-Stieljes transform of T,

z (

in an analytic function off K, and if K C_ (-M, M) and ]z] > 2M, from the uniform convergence

of E on (-M, M)it follows that
r--0
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H,,nc(,, if T represents , T((") ((") c,, is the ,tth -moment of , and

(=) =+ x(=), I1 > 2M, (2.35)
n--0

where X(-) is the limit function of the continued fraction of the monic orthogonal system of/2 (as
in (1.7). For a proof of 2.35, see [16], Chap. XI). Hance, ’(z) is an analytic continuation of X(-)
from Izl > 2M to C- K. This implies, in view of the Stieljes inversion formula (Bremermann
[4], Chap. 5), that

(T,}= lim
1 /o,,o+ 2r---; {X(z + ze)- X(z ie)}(z)dz (2.36)

for any test function , which ensures the uniqueness of T.

REMARK 6. Under the assumptions of Theorem 2, a result of R. P. Boas ensures that a

non-positive measure on the line can be found with represents Z; (Chihara [7], Chap. II). Since

the distributions representing in (2.25) are not measures when the positivity conditions fail,
Boas’ measures cannot be supported by a compact set under such circumstances.
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