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‘1. INTRODUCTION

In [12], we have studied the asymptotic equilibrium of a general nonlinear difference equation
Aznzf(n,:c"), neN. an

After, we have studied the existence of convergent solutions of nonlinear systems whose linear part
has a dichotomy See [13, 14, 16-18] These results are obtained under absolutely summable conditions
Motivated with the work of Trench (7] on differential equations we show that solutions of a system (1 1),
approach constant vectors as n — oo, under assumptions which permit some or all of sum smaliness
conditions of f to be stated in terms of conditional — rather than absolute convergence Through the
paper the conditional convergence will be simply called convergence while the absolute convergence will
be explicitly mentioned

This kind of problem for ordinary differential equations has been widely investigated by many
authors, for example see [1, 4, 6]

It seems to us that very little is known about the convergence of the solutions of finite difference
equations (see [15]) The only results that we know concerning this problem for second order difference
equations are given by Drozdowicz and Popenda [2], Catillo and Pinto [3], Szmanda [5], Handerson and
Peterson [8], Szafranski and Szmanda [9] and Medina and Pinto [10,11]

2. PRELIMINARIES

Consider the difference system (1.1), where N = {ng,no +1,---}, no is a given non-negative
integer, = is an m-dimensional vector, f: N x R™ — R™ is a function and R™ denote the m-
dimensional real Euclidean space, A is the difference operator, ie Az, = z,., — z, Throughout this
paper the norm | - | of a vector or matrix is the sum of the absolute values of its elements

By a solution of Eq (1 1) we mean any function = defined on N, which fulfills Eq (1 1) for all
sufficiently large n Note that the above definition of the solution is different from this where z fulfills Eq
(1.1)foralln e N

Throughout this paper, we will suppose the following

ASSUMPTION. The m x m matrix function V 1s non sigular on N and

f: [V)AWVTIG)| < K <oo, n>ng. @n

7
Notice that (2 1) implies
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o

YAV '0)] < oo 22)
and so Jmme
lim V™ !(n) exists (finite) 23)

(o)

LEMMA 1. If q 1s an m-vector function on N and y, V (j)q, converges, then ¥ q, converges and
no

J=no =

o0
V)Y a| <1+ K)pn, n>n, 24

J=n

where
pn=sup|Y_V(i)a| @5)
&>n 7=t
PROOF. With
P =Y. V(g (26)
J=n

using summation by parts and the fundamental Theorem of sum calculus, we have
. =

n—1
= VGl + Y AVT6) P @7

J=n

n;—

1
V_l(j)V(j)q]

From (2.3), (2.5) and (2 6),
AV @D)pt] < ol AVTIG) 52 mo;
and
lim V~!(ny)p, =0

ny—sco

hence, because of (2.2), we can let n; — 00 in (2.7) we obtain

f: g, =V (n)p. + f: A(VG)) Py

J=n J=n

Multiplying by V'(n), we obtain

V(n) i g, =p+V(n) i AVHD) P

J=n J=n

Thus, by (2.1), (2.5) and (2.6)

VYl < b+ 3 VAT 0]l

J=n

<ol +louf - S VAT ()]

J=n

S(1+K)pm n 2 ny.

DEFINITION 1. Let H(ng) be the Banach space of sequences h: N — R™ such that Vh is
bounded, with norm

IRl = supp>ne [V (n)hal. 28)
IfA>0, let

H(no) = {h € H(no)|IR|| < A}.
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In addition, we need the following definition
DEFINITION 2. (See [7]) A vector £ is a Lipschitz point of a vector function ) if there are
constants r, ¢ > 0 such that (z) is defined whenever
lz—¢l <r 29
and
Iz,b(a:l) — w(:c2)| < c|:l:1 - 2:2| (2 10)
flzr =& <ri=1,2
3. MAIN RESULTS
The following is our main theorem

THEOREM 1. For a given vector &, suppose there are constant \ > 0 and ny € N such that the
Sfunction f 1s defined on the set

U ={(n2)[[V(n)(z - &| < A n >ne}, Gn
and the series
Imih) = S VO GiE+h), n2mo (32)
converges if h € Hy(np). Suppose also lii;:
|I(n;h') = I(n; h?)| < 6||R' = B?||, n >y, (33)

whenever h!, k% € Hy(no), where
0<6<1/(1+K) (3 4)
Then Eq. (1 1) has a solution x which is defined for n sufficiently large and satisfies
Jim V(n)(z. —€) =0 (3.5

Moreover, if y 1s any solution of Eq. (1 1) such that
lim V(n)(y, — £) =0, (36)
n—oo
then z,, = y,, for n sufficiently large.

PROOF. If h € H)(ng) then from (3.3)
H(n; B)| < [I(n; k) — I(n; 0)| + |I(n; 0)],

< 6A +|I(n;0)]. 3.7
Now choose n; > ng so that
86X+ sup |I(n;0)] < A/(1 + K), (38)
n>n;

which is possible because of (3 4) and the convergence of

10 = 3. V()1G,6).

From (3.7) and (3 8),
H(n;R) <A/(A+K) if n>mny, (39

and h € Hy(ng). If h € Hy(ng), define Yh by

yhn= _Ef(]’g'*"h])v n2>mny.

J=n

From (3.2) and Lemma 1 with ¢, = f(n,£ + h,,), Yh is defined and satisfies the inequality
[V(n)Vha| < A+ K)sup|[I(&; h)], n>mn.
2n
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From this and (3 9),

V(n)Yh,| <A, n2>ny.

Therefore Yh € Hy(n;), that is, Y transforms H,(n,) into itself Now, suppose h' € Hy(n,),

(i =1,2) Then Lema 1 with g, = f(n,& + hl) — f(n,& + hZ) implies that
[V(n)(Vhe = YR) < A+ K)|I(ni k') = I(ni 12)], n>ny,
and so, from (2 8) and (3 3) (with ng = n;),
|Vr' — YR?| < 61+ K)||n' - K2 (3 10)

Hence, from (3 4), ) is a contraction mappings of H,(n;) into itself, and therefore there is an
h® € H,(n;) such that R® = VRO, that is

W= =S FGE+RY), n>m.

7=n
From Lemma 1, with g, = f(n, &+ h?), Jim V(n)hd = 0. Therefore the function z = £ + h°

satisfies Eq (1.1) and (3 5) If y satisfies Eq (1.1) and (3.6), then h! =y — £ is in H,(ng) for some

ng > n,, and
00

by =B =3 [f(.6+) — F(.E+R)], n>n,.

J=n

By an argument like that which led to (3 10),
|' — r%|| < 6(1 + K)|[R" — RO,
which implies that A} = A for n > n,, because of (3 4) This implies that z,, = y,, for n sufficiently

large.
We now apply Theorem 1 to the system

Az, = a(n)P(z,) + gn, n > ng. 311

THEOREM 2. Suppose A is an m x £ matrix function and g is an m-vector function, both defined
on N, and { is a Lipschitz point of the £-vector function 1. Suppose also that

D VHIAGWE) +g)] (.12)
3=no
converges and
2 IVHAGIVE) < co. ¢.13)
7=no
Then the conclusion of Theorem 1 holds for Eq. (3.11).
PROOF. Let
o= supr"l(n)I, (.19
n>n;

which is finite because of (2.3). Let 6 be any number that satisfies (3.4), let c be as in (2.9), and choose
ng so that

o0
Y IVHAGI VG <6, 3.15)
=y
which is possible because of (3.13). Henceforth, let n > ny. Finally, let
A=r/o, (3.16)

with r as in (2.9). We will show that ) satisfies the requirement of Theorem 1, for
f(n,z) = A(n)(z) + gn. (3.17)

We must first show that f(n, z) is defined on U, for U given as in (12). If (n,z) € U, then
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lz =€l <[V ') IV(n)(z - &) <or=r,

because of (3 14) and (3 16) " Since 1 is defined for all = satisfying (2 9), while A and g are defined on
N, it follows that f(n,z) is defined on U, and f(n,£ + h,) is defined for n > n; > ng if b € Hy(ng)
Moreover, if b, h? € H,(ng), then
[$(€+ha) = b(E+h7)| < c|h), — B2
< V)| [V (r) (R, — B7)|
<cVi(m)|||a' = RY|, n>ny; (3 18)

by (28)and (21) This, (3 15) and (3 18) imply that

> vralp(e+nl) —ple+m)])| <ol R, n2n,. (319
=n
With f as in (3 17), the functional I in (3 2) becomes I(n;h) E V(DIAGYE +h,) + )]
From the convergence of (3 12), I(n;0) exists This and the convergence of the series in (3 19) with
h! = h and h? = 0 imply that I(n; h) exists for all h € Hx(ng), f n > ny > n, Knowing this, we can
conclude from (3 19) that (3 3) holds whenever h', h? € Hy(no). This completes the proof of
Theorem 2

Stronger results are available for a linear system

Az, = A(n)xn +gn, 1 2>no. (3 20)

THEOREM 3. Suppose that for an m x m matrix function A and an m-vector function g defined
on N,

S IVHAGV )] < oo, (321)
and J=no
> VOIAGKE + g,) (322
J=no

converges for a given constant vector . Then Eq. (3.20) has a umque solution = which satisfies (3.5).
PROOF. Taking v(z) = z, the proof is similar to that of Theorem 2 for a given constant vector .
The next theorem follows from this and elementary properties of linear difference systems
THEOREM 4. Suppose A and g are defined on N, (3.21) holds and 5 V(5)A(5) and

Z V( 7)g, converge. Then Eq. (3.20) has a unique solution which satisfies (3.5) forJany given constant

vector &, and every solution of Eq. (3.22) satisfies (3.5) for some &.

PROOF. Any constant vector £ is a Lipschitz point of ¥(z) = z. Moreover, if;E:oV( 7HA>G)

converges, then 020 V(5)A(5)€ converges, too. From this, the series E V(i)IAG)E + g5]
J=no J=no

converges for any constant vector £. Therefore, for every constant vector £, Theorem 3 ensures that
there is a unique solution of Eq. (3 22) satisfying (3.5). The second statement of Theorem 4 follows the
uniqueness given by (3.6) in Theorem 1 and properties of linear difference systems.

EXAMPLE 1. The difference system

Az, 3 T—-n z? 10
_ cos(n) _ o | + cosgn) ’ G 23)
Azg n4(:z:1 - $2) n2 n—2 T9 n 4—n

has the form (3.11), forn > 1.

If V(n)=diag(n#,n*"1) with p>1, then (3.13) holds. If & # &, then straightforward
calculations show that £ = (£&1,£;) is a Lipschitz point of 1 in (3.23), and (3 12) converges if p < 4.
Therefore Theorem 2 implies that Eq (3 23) has a solution z = (z1, z2) such that




506 R MEDINA ANDM PINTO

zi(n) =& +o(n™),
zy(n) =& +o(n '),
asn — oo forall 4 < 4, provided &) # &
EXAMPLE 2. We now exhibit a system Az = A(n)z whose solutions all tend to constant vectors,
even though o |A(n)] = oo To this end, we observe that if u < T’E:l 7 et cos(e’) converges for
allr >0

Now consider the system
JAN an=3/2 pp-1/2 T
= cos(e") ) (324
Az, en3? dn32 | | zo
where a, b, c,d are constants and b # 0, so that oZjllA(n)l = 00, and let V(n) = diag(e’™, ne*™), with

0<p< % Here %I_olV(n)A(n) converges and (3.21) holds, hence Theorem 4 implies that if £; and &,

are arbitrary, then (3 24) has a solution such that

z1(n) = & + o(e™™),
z3(n) =& +o(nle),
asn — 0o
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