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ABSTRACT. Let X be an abstract set and E be a lattice of subsets of X. Associated with the

pair (X,L) are a variety of Wallman-type topological spaces. Some of these spaces generalize very

important topological spaces such as the Stone-,ech compactification, the real compactification, etc. We
consider the general setting and investigate how the properties of E reflect over to the general Wallman

Spaces and conversely. Completeness properties of the lattices in the Wallman Spaces are investigated,

as well as the interplay of topological properties of these spaces such as T2, regularity and LindelOf with.
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repleteness and completeness, zero-one valued measures, smoothness properties of measures.
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1. INTRODUCTION.
Let X be an arbitrary non-empty set and Z; a lattice of subsets of X such that 0, X e/3..A(/)

denotes the algebra generated by L, and I(E) denotes the non-trivial zero-one valued finitely additive

measures on .A.(E). Various specific subsets of I(,) have been considered by researchers along with

specific lattices in these subsets together with their topologies of closed sets. They have been referred to

as generalized Wallman Spaces (see [3],[4],[5],[6],[8]). Questions concerning their topological

properties as well as completeness properties of some of these lattices have also been investigated. The

interplay between E and the topological properties are extremely important. As noted, many specific
cases have been considered. We propose here to adopt a very general approach by considering

J(.) c I(L) to be any one of the sets usually considered as well as possibly new ones suggested in

section 2, and to consider the lattices of subsets ofJ(E) as well as the topology of closed sets determined

by them. In this general setting, we investigate the interplay between and these lattices and topological

properties.
In section 2, we review some of the standard notation and terminology and also introduce some

new subsets of I(E) for consideration. Section 3 is devoted to an analysis of completeness properties of

the lattices of J(L), and also to necessary and sufficient conditions for the topological spaces to be T2.
Many specific examples are also given.

Section 4 gives a detailed investigation of regularity matters of the lattices and of necessary and

sufficient conditions for the spaces to be LindelOf. Again a large number ofexamples is presented.
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2. BACKGROUND AND NOTATION
In this section, we introduce the notation that will be used throughout the paper, this will be

consistent with most of the standard notation used. (See for example [1],[3],[10].) Several items of

terminology will also be introduced, all of which are by now quite standard. Finally, we give a brief

survey of several of the more important generalized Wallman Spaces (see also [3],[4],[8]), and introduce

a few new ones. As indicated in the introduction, it is our aim to systematize the investigation of these

spaces by considering a general framework which subsumes all the special cases, and give proofs in this

setting which cover the known topological properties of these generalized spaces. Again let X be an

arbitrary set and let be a lattice of subsets of X such that 0, X 6. . ’ denotes the complementary

lattice to/;, that is E’ {L’[L 6. } where L’ X- L. Let I(E) be the set of finitely additive non-

trivial zero-one valued measures defined on A(E), the algebra generated by E. We now quickly specify
the following subsets of I(/;):

IR(/;) designates the set of # 6. I(/;) which are E-regular, that is/2 6. IR(E) if for all A 6. ,A(/;)
we have/2(A) sup{/2(L)]L 6. E, L C A}. 1o() denotes the set of/2 6. I(E) which are e-smooth on, that is/2 6. Io() ifL, , L, 6./; implies/2(L,) O. I() are the elements of I(/;) that are e-

smooth on .A(/;), that is, the countably additive 0-1 valued measures. /t)(/3) denotes the strongly e-

smooth measures of I(); namely/2 6./)() if L, L, with L,, L 6./; implies/2(L,) /2(L). For

any E 6. X, we define:

/2’(E) inf{/2(L’)lE C L’, L 6. }

It is easy to see that /2’ is 0-1 valued, /2’(X)= 1,/2’(0) 0,/2’ is monotone and finitely

subadditive; that is/2’ is a finitely subadditive outermeasure.

In terms of #’, we can define I,(/;) where/2 6. I(/;) if # 6. I(/;) and if/2(L’) I for L 6./;

implies the existence of an Z C L’, Z 6./; with/2’(Z) 1. I,,(/;) is frequently referred to as the set of

weakly regular measures.

Various completeness and repleteness notions have been considered (see [3],[4],[7]). We first

define for any/2 6. I(/;) the support of/2 to be ,S(/2) t {L 6./;]/2(L) 1}. With this concept, we

then have that/; is replete if for any/2 6. I(/;), ,5(/2) # ;/; is prime complete if for any/2 6. Io(/;),
,S(/2) # ;/; is weakly prime complete if for any /2 6. I(), ,.q(/2)# ;/; is fully replete if for any

# 6. I(/;), 8(/2) # . We also recall that r 6. I-I(/;) ifr"/; {0,1}, and that r(X) 1, r(0) 0, r

is monotone, and r(A N B) r(A)r(B), A, B 6./;. ,.q(r), the support of r, is defined in the obvious

way. Also r 6. Iio() ifr 6. II() and if it is e-smooth on .
There are a number ofwell-known lattice-topological properties such as disjunctiveness, normality,

compactness, etc. (see [5],[7] for further details). We make use of these properties, in particular, their

measure theoretic equivalents which will be used throughout sections 3 and 4. 6(/;) denotes the lattice of

countable intersections of sets of/;. /; is a delta lattice if and only if/5() , that is/; is closed under

countable intersections. Finally r(/;) denotes the lattice of arbitrary intersections of/; sets. Further

related matters can be found in ([5],[6],[7],[8],[9]). The various sets of measures that have been

introduced can be topologized by taking suitable bases for the closed sets. For example, for the set

IR(), we take W() {W(L)IL 6. }, where in general

W(A) {# 6. IR()I(A) 1}

where A 6. .A(), as a base for the closed sets TW(). Special cases of this where X is a topological

space and E a suitable topological lattice yield well-known examples such as the Stone-(ech
compactification, the Wallman compactification and the Banachewski compactification. Similarly we can

consider I(/;) with V(E) {V(L)]L 6. } and where V(A) {/2 6. I(/;)[#(A) 1}, where

A 6. A(/;), as a base for the closed sets. Frequently, topological properties of these spaces reflect over
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to the original lattice and conversely, for example the space (I(‘), rV(‘)) is always compact and To, it

is T1 if and only if I(‘) IR (‘) which, in turn, is equivalent to ‘ ‘’, that is ‘ is an algebra Also

V(‘) is regular or disjunctive if and only if ‘ ‘’ The Wallman space I,(‘) with Wo() as base for

the closed sets where

Wo(Z:) {Wo(L)IL

and where Wo(A) {# I(‘)I#(A) 1}, A A(‘), and where ‘ is disjunctive, is important since

it generalizes the real compactification of a topological space Necessary and sufficient conditions for this

space to be Lindelof are known in terms of ‘, and again, it is matters of this type that we wish to

generalize

The set I( (‘) with V() (‘) as a base where

and

V()(A) {# I()(‘)I#(A 1}

V()(‘)- {V()(L)IL e ‘}

has not been considered but it can be treated in a way similar to the others It is easy to show that the

lattice V() (‘) is weakly prime complete, and it is prime complete if and only if for any # I() (‘) there

exists 7 I()(‘) such that # _< ",/(‘). Also one can give necessary and sufficient conditions for this

space to be Lindel6f which are similar to the case ofI(‘) and Wo (‘) Again it is matters such as these

that we want to cover under a general approach which handles all the special cases

As a final particular case, we mention I(‘)with S(‘) as a base for the closed sets, where for

A .4(‘), 8(A) {# e I,(‘)[#(A) 1} It is not difficult to show that I(:) is then compact, and

it is T1 if and only if I,o(:) IR(.) These types of properties will all be investigated in the next two

sections. Further specific generalized Wallman spaces can be found in ([2],[4],[5],[6],[7],[9])
3. GENERAL STRUCTURE 1

In this section we begin our unified treatment of generalized Wallman spaces thereby extending the

results in ([4],[5],[6],[7],[8])
Again, X is an arbitrary non-empty set, and ‘ is a lattice of subsets of X We assume for

convenience that O, X ‘..,4(.) is an algebra generated by E, and I(Z:) denotes the finitely additive

non-trivial, 0-1 valued measures on ,4(‘). We then designate by J(‘) a subset of I() In the sequel

any J(‘) considered will be one of the sets introduced in section 2, such as I(‘), IR(‘), Io(‘), I(‘),
I.(/:), etc We then define Ha(A) {# E J(‘)[#(A) 1} where A E .4(‘). We write H instead of

Ha when J is fixed. Let A, B .4(‘), then the following properties are immediate

(1) H(A t3 B) H(A) t3 H(B).
(2) H(A N B) H(A) N H(B).
(3) H(A’) H(A)’
(4) A c S = H(A) C H(B)
(5) if {#x[x 6 X} C J(‘)then H(A) C H(B) = A C B

(6) if{#x[x X} C J(/:) thenA BifandonlyifH(A)= H(B)
The only one that needs some comment is 5) If A B, then there exists an x E A, x B Then

#(A) 1 and #(B) 0 Hence #x H(B) but #x E H(A), a contradiction In the case when J(‘)
is I(‘) or I(.) for example, then the condition in 5) and 6) will hold if and only if ‘ is disjunctive

We note that additional properties hold depending on the nature of J(‘) For example if

J(‘) Io(‘), then L, I 0, L, E ‘, if and only ifHj(Ln) 0; similarly L,, J. L, Ln, L E ‘ if and only

ifHs’(L) Hs(L), ifJ(‘) I()(‘), etc
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We assume throughout that {#zlz X} c J(/2) and consequently the correspondence --, H()
where H(E)= {H(L)IL } is a lattice isomorphism. In the special cases J(/2)=
Io(/2), 1(/2), I()(/2), I(/2); and the various Ha(/2) have been designated in the literature by V(/2),
W(/2), Vo(/2), V(/2), V()(/2), Wo(/2) respectively (see for example [4]). The above isomorphism
enables us to set up a bijection: J(/2) J(H(.)) by mapping # J(/2) onto J(H(/2)) where

-(H(A)) #(A) and where A .A(/2).
Note clearly that .A(H(/2))= H(A(/2)), and is well-defined, since H(A)= H(B) where

B ,A(/2) implies A B. The rest ofthe contention is clear.
Assume now that {/lx X} C J1 (/2) and J1 c J2. Frequently, in the applications, J2 c 1o(/2).

Again since/2 Hj (/2) is a lattice isomorphism, we have a bijection J2 (/2) Jg.(Hj (/2)) defined by

# -} , where # J(/2), and where we define (Hj (A)) #(A) for A ,A(/2). The proof of this is

not difficult. We also note that since J1 (/2) C J9. (/2), then

JI(HjI (/2)) C J2(Hj, (/2)).

We now prove the following:
TItEOREM 3.1. With the above notation, we have -), e S() with # e J2(/2) and 3’ J(/2) if

and only if# _< (/2).
PROOF. Suppose # 5 J2(/2), 7 J1 (/2) and 7 S(). We note that S() Iq Hj (L) where

the intersection is taken over those Hj, (L), Lo /2 such that g(Hj, (Lo)) 1; but this is equivalent to

#(L,) 1. So 7 S() implies 7(L,) 1; hence # < 7(/2).
Conversely, suppose for #E J2(/2), there exists 7 E Jl(/) such that # < 7(/2). Since

,5(g)= fqHj,(L,) where -(Hj,(Lo))=I=#(L); it follows that 7(L,)=l, and clearly

7 e s(). o
We give several specific applications of this theorem, thereby subsuming a large number of known

results. See ([4],[5],[6],[8]).
EXAMPLES.
(1) Let/2 be disjunctive and consider J1 I,, J2 Io, HjI (/2) Wo(/2). Then we have: If

pt < 7(/2) where # Io(/2), 7 I(/2), then 7 S(), Io(Wo(/2)). Therefore Wo(/2)
is prime complete (in I,) and conversely.

(2) Let J1 I, J2 Io and Hj (/2) V(/2). Then # < 7(/2), # Io(/2), 7 I(/2) if and

only ifV (/2) is prime complete (in I (/2)).
(3) Let J1 I, J2 I() and Hj (/2) V(/2). Then pt < 7(), # I(), 7 l(/2) if and

only ifV (/2) is weakly prime complete (in I (/2)).
(4) As a special ease of Theorem 3.1, we can take J J2 J, in which case # S(g) where

# J(/2). This of course implies that V(/2) is prime complete, V()(/2) is weakly prime

complete, V(/2) is fully replete, V(/2) is compact, and if/2 is disjunctive, Wo(/2) is replete
and W(/2) is compact, etc.

We next investigate lattice topological conditions for the lattice Hj(/2). We continue to assume that

{#lz X} c J(/2), and we consider the set J(/2) and the lattice of subsets of Hj(/2). The following

two theorems show to advantage the general approach and even specific cases do not appear in the

references.

THEOREM 3.2. Ifln(/2) C J(/2), then Hj(/2) is T1 if and only iflR(/2) J(/2).
PROOF. Suppose Its(/2) J(/2), then W(/2) Hj(/2) and so Hj(/2) is T1 as is well known

(see [7]). Conversely suppose Hj(/2) is T1. Let # J(/2); then there exits A I(/2) such that

# < (/2). If # A, then there exists L /2 such that A Hj (/2)’, # Hj (L)’. This implies

A(L) 0, #(L) 1. Therefore # A In(/2) and hence IR(/2) J(/2).
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By taking J() J() and J2() I() in our introductory remarks to this section, we have

that I() I(Hj()) given # with -fi(Hj(A))= #(A), A (5 .,4() is a bijection Also by

Theorem 3 1, we have that # _< 3,(12) where# (5 I(12) and 3, (5 J(12) is equivalent to 3, (5 S(g) With

these observations, it is now easy to show the following

THEOREM 3.3. Assuming as usual that {#l:r (5 X} C J(12) and considering Hj() in

we have Hj() is T2 if and only if # (5 I(12), # <_ 3,1(12) and # _< 3‘2() where 71, 3‘2 (5 J(12) imply

")’1 =’)’2

SPECIAL CASES:

(1) Let J IR and let 12 be disjunctive, then Hj(12) W(12) Hence W(12) is T2 if and only

if # (5 I(12) and # < 3,1(12), # < 3,2(/2), 3,1, 3,2 (5 I(/2) imply 3,1 3,2 Thus if 12 is

disjunctive, then W(12) in IR (12) is T2 if and only if 12 is normal

(2) Take J I, Hj(12) W(12) Then Wo(12) is Tg_ if and only if # (5 I(12),
# _< 3,2(12), 3,1, 3,2 c I,()implies 3,1 3,2

(3) Let J Io and Ha(12) Vo(12) Then Vo(12) is Tg if and only if # (5 I(12), # _< 3,1(12),

# < 3,2(12), 3,1, 3,2 (5 Io(12) imply 3,1 3,2

4. GENERAL STRUCTURE 2.

We have considered in section 3 the set J(12) and the lattice of subsets Hj(12) Clearly by the basic

properties given in section 3 of the ntapping Hj, we can take Hj(12) as a base for the closed sets

7.Hj (12) of a topology on J(12) Of course 7.Hj(12) consists of arbitrary intersections of sets of Hj ()
Clearly Ha(Z:) is T2 if and only if the topology is a T2 topology This is not always the case, lattice

topological properties of a lattice do not always extend to the topological lattice 7-12 of closed sets, and

conversely. We note, for example, that is compact if and only if 7-12 is compact, in which case

separates 7-12. 12 is countably compact if and only if 6(12) is countably compact, in which case separates

6(12) However 12 being normal need not imply that 7-12 is normal or conversely This will be the case for

a pair of lattices 121 C 122 if 121 separates 122. If 12 is regular then 7-12 is regular, but the converse is not

true in general However we do have the following theorem which is not difficult to prove
THEOREM 4.1. If 7.12 is regular and if 12 is a delta lattice which is LindelOf, then 12 separates 7-12

We now return to J(12) and the lattice of subsets Hj(12). We continue to assume throughout that

(#]x (5 X} C J(12). The next theorem again displays the advantage of the general approach. It not

only subsumes the special cases in the literature, but gives a systematic and short treatment for all such

cases. We show:

TItEOREM 4.2. The lattice Hj(12) in J(12) is regular if and only if for any # (5 I(12), # < p(12)

and# < 3,(12) where #, 3, (5 1(12) and p (5 J(L) == 3, < p(12).
PROOF. Suppose for any #, 3, (5 I(12) and p (5 J(12), # < 3,(12) and # < p(12) imply 3, </9(12)

Then for any such #, 3, we have #, 3, (5 I(Hj(12)) and g < on Hj(12); this implies that S() C S(g)
If p (5 S(g), then p (5 J(12) and # < p(12), but # < 3,(12); then by the condition of the theorem

3, <_ p(12). Therefore p (5 S(). Hence S() S() and so Ha(E) is regular Conversely, suppose

Ha(f-,) is regular; let #,3, (5 I(12) and p (5 J(12) and # < p(12); then g < on Ha(f,) Therefore

SPECIAL CASES.

(1) Let d" (12) I, (12) where 12 is disjunctive Then Hj (12) Wo (12) Then Wo (12) is regular if

and only if for any # (5 I(12), # < 3,(12), 3, (5 I(12) and # _< p(Z;), p I(Z;) imply

7 _<
(2) Let J(12) Io(12) and Hj(L) Vo(12) Then Vo(12) is regular if and only if #, 3, (5 I(),

p (5 lo(12) and # < 3,(12), # </9(12) imply 3, <
(3) Using the theorem we can show that Vo(12) is regular if and only ifIo(12)
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Continuing to assume {#xlx E X} C J(), we have:

LEMMA 4.3. IfJ() C/o() then Ln , L, E is equivalent to Hj(L,) , .
PROOF. Suppose L, , L,, ; then by the basic properties Hj(L,) is a decreasing sequence

of sets and if # Hj(L,,) for all n, then #(L,) 1 for all n. But # 6 J() C Io(); hence this is a

contradiction. Therefore Hj(L,) J, O. Conversely suppose Hj(L,) J, O ==, L, is a decreasing sequence

of sets; by fundamental properties, if x fq L,, for all n, then #x E Hj(L,) for all n; this is a

contradiction. Hence L,, . El
By the lemma, we get that the correspondence 7r , where 7r IIo(), and where

(Hj()) r(L), for L , is a bijection between IIo() and IIo(Hj()). It is now easy to show,

abstracting the arguments in ([4],[5]), that the following is true:

THEOREM 4.4. satisfies the condition: To each 7r IIo() there exists a 7 J() such that

7r < 7() if and only ifthe topological space (J(), THj()) is LindelOf.

SPECIAL CASES.
(1) Let be disjunctive and suppose J()=I(),THj()=TWo(). Then

(I(), TWo()) is Lindel6f if and only iffor any 7r E IIo() there exists 7 I() such that

r _< 7().
(2) Suppose J(L) I(Z), THj(,) TV(). Then (I0(,), TVo()) is LindelOf if and only if

for any r rio(E) there exists 7 Io() such that 7r _< 7().
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