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ABSTRACT. In this paper we prove the existence and uniqueness of weak solutions of the mixed

problem for the nonlinear hyperbolic-parabolic equation

(K (x, t)u’)’ + K(x, t)u’ + A(t)u + F(u) f
with null Dirichlet boundary conditions and zero initial data, where F(s) is a continuous function such
that sF(s) >_ O, Vs E R and {A(t);t >_ 0} is a family of operators of L(H(2);H-I(gt)) For the
existence we apply the Faedo-Galerkin method with an unusual a priori estimate and a result of
W A Strauss Uniqueness is proved only for some particular classes of functions F
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1. INTRODUCTION
In this paper we study the global existence and uniqueness ofweak solutions to the mixed problem for

the nonlinear hyperbolic-parabolic equations

(K(x,t)u’)’ + K(x,t)u’ + A(t)u + F(u) f in Q,(P) u(x,O) uo(x), u’(x,O) u(x), x

where Q is a cylindrical domain of Rn+l and Kl(z,t), K2(z,t), F are functions which satisfy some

appropriate conditions

Physical motivations for studying (P) come from several problems of continuum mechanics, such as

turbulence, combustion, material aging, transonic flows, etc

Let f be a bounded open set in R By Q we represent the cylinder f2 ]0, T[, T an arbitrary

positive real number In Q we consider the mixed problem for the hyperbolic-parabolic equation

KI(X)U + K2(x)u’- Au f in Q (1 1)

where K1 (x) _> 0 and Kg.(x) >_ fl > O, x E f

This type of equation was studied by Bensoussan-Lions-Papanicolau in Medeiros [2] studied the

existence of weak solution of the mixed problem for (1 1) plus the nonlinear term lulvu, p > 0 Lima [3]
analyzed the equation (1 1) in a nonlinear abstract framework In Lar’kin [4] (1 1) was studied with more

general nonlinearities, K1 and Kg. depends also t, included also in f, but still with null initial conditions,

plus strong restrictions on f
Many authors studied the equation (1 1) when coefficients K and K9. also depend on Among

them we mention Bryukhanov [5], Bubnov [6], Vragov [7] and Gadzhier [8] All of them assume zero

initial data
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A significant nonlinear generalization of problem (1 1) is the following

(K(z,t)u’) + K.,.(z,t)u’ Au + F(u) f in Q
with initial data

(z, 0) 0(:),,’(z, 0) (z),

(1 2)

(1 3)

Strauss [8] studied the existence of weak solution for (1 2) and (1 3) when K 1, K.,, 0 and F is

a function that satisfies

F continuous and sF(s) _> 0 for all s in R. 4)

Maciel [10] studied existence and uniqueness of weak solutions problem (1 2)-(1 3), when F is

continuous and sF(s) _> 0 for all s E R, where the uniqueness is proved only for some particular cases of

function F, and K1 and K2 satisfies

K(z,t) >_ O, K2(x,t) > > O.

1
K(z,t)- lKt(z,t)l > 50 > 0.

But with null initial conditions

The problem (1 2) may be included in the following general formulation

(K, (x, t)u’)’ + K2(x, t)u’ Z x + F(u) f in Q.
,2=1

(1 5)

(1 6)

(1 7)

Observe that on the set K (x, t) 0 the equation (1 7) degenerate into parabolic equation
In this paper we study existence and uniqueness of weak solution of the mixed problem for the

equation (1 7) in the case of null initial data, with F satisfying condition (1 4) For the existence we apply
the Faedo-Galerkin method (see Lions 11 ]), a priori estimates not usual and a result ofW A Strauss for

the nonlinear term (see Strauss [9]). The uniqueness is considered only for some particular cases of F
which permit the application of a method due to Visik and Ladyzenskaya 12]

The paper is organized as follows.

2 Some terminology and assumptions.
3 Existence ofweak solutions

4 Uniqueness

2. SOME TERMINOLOGY AND ASSUMPTIONS
By D(f) we denote the space of infinitely differential functions with compact support contained in f,

the inner product and norm in L2(f) and H0(f2) will be represented by (.,.), I.I and ((.,.)), I1.11
respectively By H- (f) we denote the dual space ofH(f)

Let X be a Banach space, we denote by L’(0, T; X), 1 < p < c, the Banach space ofvector-valued

functions u- (0, T) X which are measurable and Ilu(t)ll, L’(0, T) with the norm

IlUllr.oo(O.T:X) ess sup Ilu(t)llx.
0<t<T

Let us consider the following family of operators in L(Hlo (fl), H-1 (f))

A(t)=- %
,3=

where

az

Here t denote the derivative in distributional sense

for all i,.7 1 n

((o,r;(a/// fol i,=l,...,.

(2 1)

(2.2)
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We suppose that

E a:3(x’ t)t3 J([l[2 + + [n[2)
t,3=

753

(23)

for all (t, ) [0, T] x R and a.e. in f, with > 0 a constant.

Ifwe denote by a(t, u, v) the family ofbilinear forms in H(f) x H0 (f) associated with A(t), we
have

t)
,3=

wch is setc. From (2.3) it follows that

a(t, u, u) llull u, for 1 u Hd() d [0, T].

From the sumptions on % we have that h(t) a(t, u, v) belongs to L(0, T). It follows that

f Ou Ov

(2 4)

which will be denoted by a’ (t, u, v).

3. EXISTENCE OF WEAK SOLUTIONS
THEOREM 3.1. Consider F satisfying (1.4) and suppose the functions K1, K2 and f satisfy

Kl(z,t) > 0 a.e. in f, Vt [0,T] (3 1)

{K1,K2} CI([o,T]’L()) C([0, T] L(f)), (3 2)

K2(x t)+K(x’t--) >5o>0, a.e. in ft Vte[0, T] (3 3)

f L2(O,T;L2(f)). (3 4)

Then there exists u defined in Q such that

u L (0, T; Ho (ft)), (3 5)

{u’, (X/-l)U’} L2(0, T; (f)) L(O,T;L2(f)), (3 6)

and

(KlU’)’ + K2u’ + A(t)u + F(u) f in LI(O,T;H-I() + LI()), (3 7)

u(O) (KlU’)(O)- 0. (3 8)

REMARK 3.1. Suppose we have proved (3 5)-(3.7). Let us see that the initial data (3 8) make

sense. In fact, by (3.5) and (3.6) follows, that u E C([0, T]; Lg(f)), therefore u(0) makes sense By
(3 6), (3.7) it follows that

Kau’ C([O,T];H-a() + LI(Q))

so that (K,u’)(O) 0 also makes sense.

The proof of Theorem 3 will be a consequence ofthe following

TItEOREM 3.2. Let Fk :R - R be a function satisfying the following conditions sFk(s) > 0,

Vs R, Fk is Lipschitzian and differentiable except on a finite number of points Then for each k N

there exists uk defined in Q such that

{u,uk, (X/-l)Uk} L(O,T;H()) x L2(O,T;L2(fl)) L(O,T;L2(fl)), (3 9)
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(K,u)’ + K2u’k + A(,)uk + Fk(Uk) f in L2(O,T;H-’(f)), (3 10)

u,(O) (gu’)(O) 0. (3.11)

PROOF. We know (see [9]) tt there ests a sequence ofnctions F R R inch that each F
is Lipsct with constt ak, derivable except on a fite number of points, sF(a) 0 d the

sequence converges ufoy to F on the bounded sets ofR.
For each k N, e R (fix) th 0 < e < 1, we consider the problem

(gl,u,k) + K2u,k + + Fk(u,)(P) (0) (K’)(0) 0

whereK K + e

Let (w,),e be a bis of H(fl) md V [w,...,w] the subspace generated by the m first

veaors ofthe basis (w,). For m N consider the nction

(,) #(),(), 0 s s , < T, ( )
z=l

where g,(t) e found as solutions of the itial vue problem for the system of ordin differenti

eations
((K),,) + (K’ ,) + a(,u,

+ (F(),,)= (/, ,), S S ( )

u) 0. ( 4)u(0) (K’

By Cathodo’s theorem follow the estenc of gk,(), 1 m. The a priori estimates

wch shl be obtned, pet us to end the appromate solutions uk to the inte [0, T]md so
ps to the lit when m, k d e 0.

fact, multiplng the equations (3.13) by gk,, adding from 1 to m d integrating in

[0,, < t, we have

ffK,() ’() + (,(),())

t(( 1 ) ) tUm(),Um() d + 2 (F(m(),m()))a

2 (I, m())d + ’(, m(),Um())d. (3. lS)

.. et a(t) I (()a(. Then a(t) o d

((.m()),

Using Retook 3.2 d hotheses (2.4), (3.2) d (3.3) in (3.15) we obtNne estimate

[Kl(t)ekm(t)[ t 12+ 60 lu’() + llu(t)ll c, (3.16)

where C is a constt independent of t, k, e, d m. The estimate (3.16) implies that we c prolongate

the appromat solution u to ime [0, T]. Then there ests a subsequenc of (u), wch we

still denote by (u), d a nction u such that

u u wey-stin L(O,T;H()) (3 17)

weyin L2(O,T;L2()) (3 18)ekm

uk’ uk’ wey-st in n(0, T; L2()). (3 19)
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REMARK 3.3. We have that Fk is Lipschitzian with constant ak > 0, and satisfy sFk(s) >0Vs R,
then F (0) 0 Therefore we obtain _

Using (3 16) and the continuous inclusion ofL (0, T; L ()) into L (0, T; L ()), we obtain that

where C(a) is a constant which depends only on ak. Then, by the compactness argument, it follows
that

Fk(U,km)Fk(u,k) ae in Q, as moo.

Now we combine Remark 3 3 with a result om Lions (see 11, p 12]), we have that

Fk(U,km) Fk(u,k), weaklyin (o,r;(a). (3.20)

Multiplying (3 13) by 0 C(), integrating in [0, T], using (3 17)-(3 19) d the fact (w,) is a basis of

H() we have

vO)dt + a(t, u,, vO)dt

+ (F(u,),vO)at (l, vO)at, Vv e H(fl) (3 21)

Obsee that the estimate (3 16) is yet tree for u,k Then we can take the limit as e 0 in (3 21) d
we obtain a nction uk, such that

{,;,;} e (o,r; (a) (o,r; (a) (o,r; (a) (3 22)

d

(Klu;)’ + Kuk + A(t)uk + Fk(uk) f in (o,r;-l(a). (3 23)

By the stdd way (as in Lions 11 ]) wec see that

(0) (rl;)(o) o. (3 24)

The proof ofTheorem 3.2 is completed.
Multiplng (3.23) by Uk (in the sense ofthe duNity between H-1 (fl) dH(fl)) d integating in

[0, T] we obtn
r
(N(),)at c, (3.25)

where C is a constt wNch does not depend on k

Obsee that the estimate (3 16) does not so depend on k. TNs implies that there ests a

subsequence of (uk)ke, wNch we still denote by (uk), d a nction u such that

uk u wey-st in L (0, T; H (a)) (3 26)

u’ L (0, T; Luk wey in (fl)) (3 27)

Klu; u’ wey-stin (o,r;(a). (3.2s)

By (3 26) and (3.27) d Aubin-Lions’ lena (see 11, p 58]) we have that

UkU stronglyin (0,r;(a) anda.e, in Q. (329)

At tNs point we state the following theorem from Strauss
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STRAUSS’ TIIEOREM. Let fl be a finite measure space with measure dx, X and Y the real
Banach spaces, (ua) a sequence of strong measurable functions of f in X and (ha) a sequence of
functions of 12 x X such that

(i) (h) is uniformly bounded in flx K for all bounded K C X.
(ii) ha(., ua(.)) is measurable and fll()llxllh(, u())llv < c’ < , vd
(iii) IIh(, ,()) ()llv 0 as --, oo a e. in S2.

Then v E L (; y) and

f IIh(x, u(x) v(x))lly - 0 as j - oo.

Since we have (3 25) and (3.29), we can use Strauss’ Theorem and we have that

Fk(uk) F(u) strongly in LI(Q). 0.30)

Finally we take the limit as e ---, 0 and k oo (3.21) and we obtain (3.7).

4. UNIQUENESS
We do not prove uniqueness in the general case. For some particular F we can use Ladyzenskaya’s

methods (see [12]) in order to obtain the uniqueness of solutions So we have uniqueness in the
following cases

THEOREM 4.1. Suppose that F R R is a local Lipschitz function such that F() _> O for all
s C R, K C L (0, T; L2 ()) and

1
K2(x,t) ]K(x,t)l _> 60 > 0 a.e. in fl, Vt [0,T] (4.1)

and n 1. Then there exists a unique function u(x, t), (x, t) in Q, such that

{u,u’} e L(O,T;H()) x L2(O,T;L2(f)) (4 2)

which is a solution ofthe problem (3.5)-(3.8).
PROOF. Suppose we have two solutions u and v in the conditions of Theorem 3 1. It follows that

w u v is a solution of:

(glw’)’ +K2w’ +A(t)w+F(u)-F(v)=0 in LI(O,T;H-I(f2)+LI(f2)) (4.3)

w(O) (Kw’)(O) 0. (4.4)

We prove that w= 0in [0, T]. With n 1 then Hd(2)c L(2). Since {u,v} e (L(O,T;H(fl)))
and F is a local Lipschitz function then

{f(u),f(v)} e (L(O,T;g-l()))2.
Therefore by (4.3) we have

(gw’)’ +K2w’ +A(t)w+F(u)- f(v)=O in L2(O,T;H-(f)). (4.5)

We consider for 0 < s < T a nion q(t) be defin by:

-w()d if Ots(t)=
0 if s<tT.

Ts imegrM ests d (t) H (fl) Ifwe represem

Wl(t) w()d,

then

v(t) l(t) ().
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We have (s)=0, ’(t)=w(t), and it makes sense to evaluate
(t) E Ht(ft). We obtain

((K1w ), (t))n-:(n).n()dt + (K2w’, ap(t))dt

+ (A(t)w,

+ (F()- V(, (t)) > at O,

757

(Klw’) E H-(12) in

(46)

so we have

((Klw’)’, (t))H-(f),H)(ft)dt ((Klw(S), w(s))) -I- - (K’lW w)dt,

((K2w’)(t), el(t))dt (Kw, (t))dt (K2w, w)dt

(A(t)w, (t))H-,(n),H(n)dt a(t, (t), (t))dt

1 1
(t, O(t), (t))dt.

2
(0, (0), (0)) (4.7)

Then from Equation (46) we obtain that

1
((Klw)(8) w(8))-I-50 Iw(t)lUdt / II(o)ll

2

< IfoS (F(u)-F(v),(t))ldt+ IfoS(Kw,(t)dt)l
+ la’(t, (t), (t))ldt.

With {u, v} E L(0, T; L(f])) then exist a constant C > 0 such that

lu(x,t)l < C and Iv(x,t) < CI ae. in Q.

(4 $)

Therefore we have

(F(u) F(v), (t))dt <_ IF(u(z,t)) F(v(z,t))l I(t)ldzdt

_< Iw(t)l

So we have

C Iw(t)ll(t)ldt,

(4.9)

(4.10)- la’(t, (t), (t))ldt Cl Ilzoa(t)ll2dt -+- Clsllwl(S)ll.
Using (4.9), (4.10) and (4.11) in (4.8) d the fact (0) wx(s) we obtn

()11((Kw)(s) w(s)) + 6o Iw(t)ldt + Ilwl2

c Iw(t)l IWl(S)ldt + C Iw(t)l IWl (s)ldt

+C IIw(t)lldt + Cll()ll.

(4.11)

(4 12)
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and for 0

_
s

_
s0,

Let A > 0 be a number to be fixed later. The inequality (4 12) become:

(-2 ((KlW)(), ()) / (60 C2) I()la + C + llwl()ll

C+ II()lld. (4 13)

Now choosing A such that 60- CA 2 we obtn A d if s0 is such that-- (C1 + )SO we Obtn

80 C > 0

I1,()11 _< c, /- II,(t)lldt. (4 14)

This inequality implies wl (s) 0 for all 0

_
s

_
So, or w(s) 0 on 0

_
s _< so, or u 0 on [0, T],

which proves the uniqueness ofTheorem 4.1.
TheOReM 4.2. f >_ 2, g e C(R), IF’(s)l <_ CII, V R, where ! < p < ifn > 2 or

0 < p < oo if 2. Then, there exists a unique function (z, ), (x, ) 6 Q which is a solution of the
problem (3.5)-(3.8).

PROOF. With sF(s)

_
0 and F is continuous then F(O) 0 and f F()d(

_
0 Then F satisfies

conditions ofMello 13 ], and therefore we have the uniqueness.
THEOREM 4.3. Suppose that F R - R is a global Lipschitz function such that sF(s) _> 0 for all

s 6 R Then exists a unique function (z, t), (z, ) Q that is a solution ofthe problem (3.5)-(3.8).
PROOF. See Maciel 10]
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