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ABSTRACT. In this paper an extension of a theorem of Prolla is given and several interesting
corollaries are derived. Fixed point results are also given in the end.
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1. INTRODUCTION.

Recently several researchers have given extensions of the following well-known theorem of Ky Fan
[4] on best approximation.

THEOREM 1. Let C be a compact convex subset of a normed linear space X and f: C — X a
continuous function. Then there is an z € C such that

llzo — fzoll = d(fzo,C) = inf{|| fzo — yll : y € C} .

There are several proofs of this theorem using the KKM-map principle, variational inequality and
fixed point theory. The above theorem has interesting applications in fixed point theory and
approximation theory.

Prolla [8] gave the following.

THEOREM 2. Let C be a nonempty compact convex subset of a normed linear space X, and
g : C — C continuous, almost-affine, onto map. If f : C — X is a continuous function then there is a
Yo € C such that

lgyo — fyoll = d(fy0,C) -

Note. In case g = I, an identity function, then Theorem 1 is obtained.

The purpose of this paper is to extend Theorem 2 and derive a few interesting corollaries.

We need the following.

Let X be a Banach space and C a nonempty subset of X. Let z€ X and denote
d(z,C) = inf{|lz — y|| : y € C}. Incase d(z,C) = ||z — y|| for y € C, then y is said to be an element
of best approximation to z. The set of best approximation to z is given by

Pz)={y€C: e~y =dzO)}.
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The map P : X — 2€ is called the metric projection onto C. If Pz # @ for all z € X then C is
called a proximinal set. In case P(z) contains at most one element for each z € X then C is called a
Chebyshev set.

A subset C of X is called an approximatively compact if for every z € X and every sequence {y,,}
inC withnli'n;0 lz — y,|| = d(z, C) there exists a subsequence {y,, } converging to an element of C.

A compact set is always approximatively compact but converse is not true. For example, a closed
convex set in a Hilbert space is approximatively compact but not compact.

For an approximately compact set C the following holds.

i) Pzx#Qforeachz € X,

i) Cis closed;

iii) Pz is compact,

iv) if C is convex then Pz is convex,

v)  the metric projection P : X — 2€ is upper semicontinuous (see [9] or [11]);

vi) P(A)= U{P(z):z € A} is compact for any compact subset A in X.

Let X and Y be normed linear spaces and 2¥ denote the set of all nonempty subsets of Y. A
multivalued mapping F : X — 2Y is upper semicontinuous (usc) if F_I(A) ={z€eX:FxNA#0}is
closed in X for each closed set AinY.

. A multivalued map F is said to be compact if F(X) is contained in a compact subset of Y. F is
said to be acyclic if F'z is nonempty, compact and acyclic subset of Y for each z € X.
A multivalued map F : X — X (X is a metric space) is said to be admissible if there are maps

.F,ZX,'—>X,+1 i=0,1,2,...,n X0=Xn+1 =X

such that:
i) F=F,F,,..F;

i)  F; is acyclic and usc for each i;

iii) X, are metric spaces for eachi = 1,2, ...,n (see [7]).

The following theorem will be used [7] in our work.

THEOREM 3. Let C be a convex subset of a Banach space X and F : C — C an admissible
compact map. Then F has a fixed point.

Let C be a convex subset of X. Amap g: C — X is almost-affine if it satisfies

lg(Az1 + (1 = N)z) — yll < Allgzr — 3l + (1 — N)llgz2 — ¥l

forallz;,zo € C,ye Xand0 < A < 1.
g is an affine map if
9(Azy + (1 = N)zp) = Agz1 + (1 — A)gza, A€ (0,1).

If g: C — C is a single-valued function then g is said to be proper if g~'(A) is compact for A
compact.

The following is the main result.

THEOREM 4. Let C be a nonempty convex subset of a normed linear space X and P : X — 2€
the metric projection satisfying

i) Plz)={yeC:|lz—y||<|lx—=2| forall z€ C} #0 foreach z€ X
and

ii) P sends compact subsets of X onto compact subsets of C.

Let g : C — C be a continuous, onto, proper and g~(z) an acyclic subset of C for every z € C.

Then for every continuous map f: C — X with f(C) relatively compact there exists a y, € C
such that
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llgvo = fyoll = &(fyo, C) -

Note. 1. Incase C is an approximatively compact set then conditions i) and ii) are satisfied by P.

2. In case C is a compact convex set then the condition that f(C) is relatively compact is not
required since the continuous image of a compact set is compact. The condition that g is proper is also
not needed, since g is continuous so for any compact set D in C, g~'(D) is a closed subset of a compact
set C and hence is compact.

The proof'is on the same lines as in [3].
PROOF. Let P : X — 2€ be the metric projection. Define a multivalued map F' : C — C by

Fz={yeC:gye P(f(z))}.

Then Fz # @ for each = € C since g is an onto map. F(z) is closed and acyclic (see [3]). We show that
F is upper semicontinuous. This will be done as in [10].

Let B be a closed subset of C and z a limit point of F~!(B). We choose {z,} C F!(B)C C
such that z, — z. We show that z € F~1(B). Since for each n, F(z,) N B # @ we have {y,} CC
withy,, C F(2,) N B.

Then for each n,

llgyn — fznll = d(f 20, C). (%)

Let A= f(C) and D = P(A). By ii) D is a compact subset of C. Since g is a proper map
g~ 1(D) is a compact subset of C.
Now, for each n,

Yo € F(22) = g7 'Pf(2) C g7 'PF(C) C g™ (D).

Consequently, there exists y € C and a subsequence {y,, } of {y,} such that y, — y. By (*) we get
that

ls@) - f(2)Il = d(f2,C).

This gives y € F(z) N B, that is, z € F~!(B) and F is an upper semicontinuous multifunction.

Now, the map F =g ' o Po f:C — C is an admissible map. Since f(C) is relatively compact
therefore F(C) = g~ '(P(f(C))) is also relatively compact because the image of a compact set under
upper semicontinuous map with compact values is compact.

Then F satisfies conditions of Theorem 3 and has a fixed point, say y, € F'(yp). This implies that

llgyo — fuoll = d(fe,C)-

An almost affine map satisfies the condition that g~(z) is an acyclic set for each z€ C. Asa
consequence we have the following [10].

COROLLARY 1. Let C be a nonempty convex subset of a normed linear space X and
P : X — 2€ the metric projection satisfying i) and ii) of Theorem 4. Let g: C — C be a continuous,
onto, almost affine and proper map. Then for each continuous map f: C — X with f(C) relatively
compact there exists a y, € C such that

llgvo — fwoll = d(f0,C) -

In case C is an approximatively compact set then conditions i) and ii) are satisfied and we have the
following [3].

COROLLARY 2. Let C be an approximatively compact convex set of a normed linear space X
and g : C — C continuous, onto, proper and g~!(z) is an acyclic subset of C for every z € C. Then for
each continuous function f : C — X with f(C) relatively compact there exists an zo € C such that
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llgzo ~ fzoll = d(fz0,C).

In case C'is an approximatively compact and g = I, an identity function, then we get a well-known
result of Reich [9].

Recently in [2] almost quasi convex g was considered.

The function g : C — X is said to be almost quasi convex if

lg(Azy + (1 — A)z2) — yl| < max(|lgzy — yl|, lgz2 — ¥ll)

forz;,zo€C,ye XandO< A< 1.

As in [3] it is easy to see that almost quasi convex implies that g~!(z) is an acyclic set. Therefore a
recent result due to Park, Singh and Watson [6] given below, follows as a corollary.

COROLLARY 3. Let C be a nonempty convex subset of a normed linear space X and
P : X — 2€ the metric projection satisfying

i) Pz #0@foreachz € X, and

i) P sends compact subset of X onto compact subsets of C.

Let g : C — C be a continuous, almost quasi convex, onto and proper map.

Then for each continuous map f : C — X with f(C)) compact there is a y, € C such that

llgyo — fyoll = d(fyo,C).

Note. They [6] concluded that either
i)  f and g have a coincidence point w € C, i.e.,, fw = gw, or
ii)  thereis a w € C such that gw € 9C and

0<llgw— fuwll <llz—fw| forall z€lc(gw).

Recall that if f : C — X is a map, then the inward set I (z), of C at z is defined by
Ic(z) ={y:y € X, thereexist u€ C and r >0 suchthat y =z +r(u—z)}.

The closure is denoted by I (). The function f is said to be inward map if f(z) € Ic(z) for
every z € C and weakly inward if f(z) € I¢(z).

In case C is a compact convex subset of a normed linear space X we get the following.

COROLLARY 4. Let C be a compact convex subset of a normed linear space X and g: C — C
continuous, onto, g~!(2) is an acylic set for each z € C. Then for each continuous function f : C — X
there is a yy € C such that

llgyo — fyoll = d(fyo,C)-

If g = I, an identity function, in Corollary 4, then we get a well-known result of Ky Fan [4].

If in Corollary 4, g is almost-affine, continuous, onto then we get a theorem of Prolla [8].

If fy, € C for all y, then Corollary 4 yields a coincidence theorem, that is, there is a y5 € C such
that

Y0 = fyo-

In case g is an identity function in Corollary 4 and f has an additional condition then we get a fixed
point theorem given below.

COROLLARY 5. If all the hypotheses of Corollary 4 are satisfied with g = I, and in addition:
for any = € 8C with z # fz there exists a number A (real or complex depending on whether the vector
space is real or complex) such that || < 1 and
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y=xx+(1-ANfzeC,

then f has a fixed point.
PROOF. By Corollary 4 we have that

lvo — fyoll = d(fyo,C)-

Take y, € OC and assume that y, # fyp. Then

0 < |lyo = fyoll < lly = fyoll = Mo + (1 = A) fyo — foll
= [|A(yo — fyo)ll
= |Alyo — fyoll < llyo = fuoll

a contradiction. Hence y, = fy,.

In case g = I, an identity function, then we could derive a very well-known result due to Browder
[1] as a corollary.

COROLLARY 6. Let X be a Banach space, C a compact, convex subset of X and f : C — X a
continuous function. Suppose that for each z € C with z # fx there exists a y € I¢(z) such that

ly = f=ll < llz - f=|.

Then f has a fixed point.
PROOF. By Corollary 4 (with g = I), we have

lz — f=|l = d(f=,C)

ie |lx— fz|| < || fx—z| forall z € C.
This inequality remains valid (see [5]) for all y € I¢(z), i.e.
lz—fall < fz—yll  forall ye€lc(z). (%)

By hypothesis for each x € C with z # fz we have y € Io(z) such that
ly = f=ll < llz - f=l|

a contradiction to (*+). Hence f has a fixed point.
Further work in this direction due to Park [5] gives several applications.
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