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1. INTRODUCTION.
Recently several researchers have given extensions of the following well-known theorem ofKy Fan

[4] on best approximation.
THEOREM 1. Let C be a compact convex subset of a normed linear space X and f C --} X a

continuous function. Then there is an x0 E C such that

I10 fro011 d(fxo, C) inf{llfa:0 11: C}.

There are several proofs of this theorem using the KKM-map principle, variational inequaty and
fixed point theory. The above theorem has interesting applications in fixed point theory and

approximation theory.
Prolla [8] gave the following.
THEOREM 2. Let C be a nonempty compact convex subset of a normed linear space X, and

g C --, C continuous, almost-affine, onto map. If f C --, X is a continuous function then there is a

Y0 E C such that

IIo fyoll d(fyo, C).

Note. In case g I, an identity function, then Theorem is obtained.

The purpose ofthis paper is to extend Theorem 2 and derive a few interesting corollaries.

We need the following.
Let X be a Banach space and C a nonempty subset of X. Let x X and denote

d(z, C) inf{l[z y[[ y C}. In case d(z, C) [Ix yl[ for y C, then y is said to be an element

ofbest approximation to x. The set ofbest approximation to x is given by

P(x) {y e C: I1 11 d(x, C)}.
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The map P X 2c is called the metric projection onto (7. If Pz : 0 for all z 5 X then (7 is

called a proximinal set. In case P(z) contains at most one element for each z 5 X then (7 is called a

Chebyshev set.

A subset (7 ofX is called an approximatively compact if for every z E X and every sequence
in (7 with lim IIz ull d(z, 6’) there exists a subsequence {/,,} converging to an element of C.

A compact set is always approximatively compact but converse is not true. For example, a closed

convex set in a Hilbert space is approximatively compact but not compact.
For an approximately compact set C the following holds.

i) Px # O for each z E X;
ii) (7 is closed;

iii) Px is compact;

iv) if (7 is convex then Pz is convex;

v) the metric projection P X 2c is upper semicontinuous (see [9] or [11]);
vi) P(A) U {P(x) z E A} is compact for any compact subset A in X.
Let X and Y be normed linear spaces and 2Y denote the set of all nonempty subsets of Y. A

multivalued mapping F X 2v is upper semicontinuous (use) if F-1 (A) {z E X Fx f’l A # 0} is

closed in X for each closed set A in Y.
A multivalued map F is said to be compact if F(X) is contained in a compact subset of Y. F is

said to be acyclic ifFx is nonempty, compact and acyclic subset ofY for each z 5 X.
A multivalued map F X X (X is a metric space) is said to be admissible if there are maps

F, Xi -- Xt+l 0,1,2,...,n X0 Xn+l X

such that:

i)
ii)

iii)
F/is acyclic and usc for each i;

Xi are metric spaces for each 1, 2, n (see [7]).
The following theorem will be used [7] in our work.
TIIEOIIEM 3. Let C be a convex subset of a Banach space X and F (7 (7 an admissible

compact map. Then F has a fixed point.
Let (7 be a convex subset ofX. A map g (7 X is almost-aftine if it satisfies

11(21 + (1 ,x)z) 11 _< ,Xll 11 + (1 ,X)llz 11
for all Zl, z2 C, /E Xand0 < A < 1.

g is an affme map if

g(Azl q- (1 A)z2) AgZl h- (1 A)gz2, A (0,1).

If g: (7 (7 is a single-valued function then g is said to be proper if g-1 (A) is compact for A
compact.

The following is the main result.
TIIEOREM 4. Let (7 be a nonempty convex subset of a normed linear space X and P X 2c

the metric projection satisfying

i) P(z) (V 6’ IIz- vii <_ IIz zll for all z E C} # for each z E X
and

ii) P sends compact subsets ofX onto compact subsets of (7.

Let t/: (7 (7 be a continuous, onto, proper and t/- (z) an acyclic subset of (7 for every z E (7.

Then for every continuous map f :0 X with f((7) relatively compact there exists a V0 E (7

such that
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Note. I. In case C is appromativdy compact set thon conditions i) d ii) e satisfied by P.
2. In case is a compact convex set then the condition that f(C) is relatively compact is not

required since th continuous image of a compact t is compact. The condition that g is proper is so
not needed, since g is continuous so for y compact set D in , g- (D) is a closed subset ofa compa
t Cd hence is compact.

The proof is on the se lines as in [3].
PROOF. Let P X 2c be th metric projection. Define a multivued map F C by

Fx (y C P(f())}.

Then Fx 0 for each x C since g is onto map. F(x) is closed and acyclic (see [3]). We show that

F is upper continuous. Ts ll be done as in 10].
Let B be a closed subset of C d z a lit point of F-(B). We choose (z,} F-(B) C

such that z, z. We show that z F-(B). Since for ch n, F(z,) B 0 we have {y,} C
th y, F(z,) B.

Then for ch n,

I1. -/z.II d(/., C). (,)

A f(C) d D P(A). By ii) D is a compact subt of . Since g is a proper map

g- (D) is a compact subt ofC.
Now, for each n,

U, e F(z,) g-Pf(z,) g-Pf(C) g- (D).

Conuently, there ests 9 C d a subsoquence {y) of (9,} such that 9 Y. By (.) wo get

that

II() f()ll d(f, C).

Ts ves 9 F(z) B, that is, z F- (B) d F is upper secontinuous multinction.

Now, the map F 9
-1 o P o f- C C is adssible map. Sin f(C) is relatively compact

therefore F(C) g-l(p(f(C))) is so relatively mpa bause the image of a compa under

upper continuous map th compact vues is compact.

Then F tisfies nditions ofTheorem 3 d has a fix point, y 0 F(90). Ts impliest

II0 f011 d(f0, C).

ost ne p tisfios the ndition tt g- (z) is acyclic t for ch z C. a

conquen we Mve the follong [10].
COROLY 1. t C be a nonemp nvex subset of a no lin space X d

P" X 2c the metric projtion tisng i) d ii) of Theorem 4. Let g" C C be a continuous,

onto, most ne d proper map. Then for each continuous map f" C X th f(C) relatively

compa there ests a 0 6 C such that

c C is approtively compact t then nditions i) d ii) e satisfied d we have the

foog [3].
COROLY 2. L be appromatively compact convex t of a noed lin space X

d g" C C continuous, onto, properd g- (z) is acyclic subset ofC for eve z C. Then for

each continuous nion f" C Xth f(C) relatively compact there ests x0 C such that
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[[gxo fxo[[ d(fxo, C).

In case C is an approximatively compact and g I, an identity function, then we get a well-known

result ofReich [9].
Recently in [2] almost quasi convex g was considered.

The function g C X is said to be almost quasi convex if

llg(AXl + (1 A)x2) Y[I < max(l[gxl z/ll, llgx2 yll)

foray, x C, y Xand0 < A < 1.

As in [3 it is easy to see that almost quasi convex implies that g-l(z) is an acyclic set. Therefore a

recent result due to Park, Singh and Watson [6] given below, follows as a corollary.
COROLLARY 3. Let C be a nonempty convex subset of a normed linear space X and

P:X --, 2c the metric projection satisfying

i) Px ( for each x X, and

ii) P sends compact subset ofX onto compact subsets ofC.
Let g C C be a continuous, almost quasi convex, onto and proper map.
Then for each continuous map f C -, X with f(C) compact there is a Y0 C such that

I10 011 d(/0, C).

Note. They [6] concluded that either

i) f and g have a coincidence point w E C, i.e., fw gw, or

ii) there is a w E C such that gw OC and

o < llgw- f,.ll _< ll-/.ll for all z E le(gw).

Recall that iff C X is a map, then the inward set Iv(x), ofC at x is defined by

Iv(x)={y:yEX, there exist uC and r>0 such that y=x+r(u-x)}.

The closure is denoted by Iv(x). The function f is said to be inward map if f(x) Iv(x) for

every x C and weakly inward if f(x) E Iv (x).
In case C is a compact convex subset ofa norrned linear space X we get the following.

COROLLARY 4. Let C be a compact convex subset of a normed linear space X and g C --, C

continuous, onto, g-1 (z) is an acylic set for each z E C. Then for each continuous function f C -, X
there is a Y0 C such that

llSVo :/olI d(/Yo, C).

that

Ifg I, an identity function, in Corollary 4, then we get a well-known result ofKy Fan [4].
If in Corollary 4, g is almost-affine, continuous, onto then we get a theorem ofProlla [8].
If fYo C for all Y0 then Corollary 4 yields a coincidence theorem, that is, there is a Y0 C such

gY0

In case g is an identity function in Corollary 4 and f has an additional condition then we get a fixed

point theorem given below.

COROLLARY 5. If all the hypotheses of Corollary 4 are satisfied with g I, and in addition:

for any x OC with x :/: fx there exists a number A (real or complex depending on whether the vector

space is real or complex) such that I,xl < 1 and
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then f has a fixed point.
PROOF. By Corollary 4 we have that

Ilyo fyoll d(fyo, C).

Take Yo - (9C and assume that Yo :/:- fYo. Then

o < II/o Syoll -< fly- I%11 ll,yo + (1 &).fYo
ll,(o fyo)ll
I,I II/o fyoll < II/o I%11

a contradiction. Hence Y0 fYo.
In case g I, an identity function, then we could derive a very well-known result due to Browder

as a corollary.
COROLLARY 6. Let X be a Banach space, C a compact, convex subset ofX and f C X a

continuous function. Suppose that for each x E C with x fx there exists a y Ic (x) such that

I1- fxll < IIz- fxll,

Then f has a fixed point.
PROOF. By Corollary 4 (with g I), we have

z fzll d(fx, C)

i.e. I1- fll IIf- zll for all z C.
This inequality remains valid (see [5]) for all y It(x), i.e.

II fll _< IIf ll for al u z tc(z). (**)

By hypothesis for each x 5 C with x fx we have y Iv (x) such that

I1- fzll < IIz- fxll

a contradiction to (**). Hence f has a fixed point.
Further work in this direction due to Park [5] gives several applications.
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