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1 Introduction

In the paper DRBEK, KUFNER and NICOLOSI [3], the problem of the existence of solutions of boundary
vlue problems for higher order nonlinear degenerated elliptic equations was investigated. The underlying

differential operator of order 2m (m 1) was supposed to be in the divergence form

(Au)(x) (-1)liDA(x,u(x) D"u(x)),x e fl Q nN,

and the weak solutions have been sought in a special weighted Sobolev space

W,(,)

(1 < p < ,u (, (] m) denotes a collection of weight functions), nonned by

IDu(x)l"o(x)dx + IDu(x)ldx

Th wight unctions u u() which dscrib in a crtain sns th degenerc or sinulrt o th

operator A rom (1.1) ppoar only on th highost (m-th order) driwtivs. Th ssumptions

u Lo(D ), , ’ Llo() (1.3)

guarantee that the space wm’p(u,)is we defined and contains C(D) as a subset.

In addition to (1.3) the assumption

with a suitable > 0, was considered in [3]. Then the imbedding

w (.,) w ,() .5)
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wilt, p, p,s/(.s + 1),llowed 1Is to reduce all considerations in [3] fl’om the wcgh/td Sobolev
to lh(’ ,,wcglttcd out,s, and consequently, to use the well-developped apparatus of the classwal (i.e.
onweightod) Sobol,,v slm(’e (imbed(ling theorems etc.). Moreover, the assumption

N
> (l.i)

P

,ed lhe ’ompa’t, s. of the imbedding

W...."(,,) W ’(). (l.Z)

llow,w, the assumption (1.-1)(together with (1.6))is a "global" one in contrary to the assunptions (1.3).
lten (1.4) is rather reslrictivo and excludes a big class of weight functions appearing in practical
Therefore, it is the iutention of this paper to rcmovc the assumption (1.4) and to work cxcluszvt’ly i
wczfhted Sobolev spaces, avoiding the "deviation" via classical Sobolev spaces expressed by the imbedding
(1.5). The informatiot available about the properties of weighted Sobolev spaces allow us to handle the
problem dzrectly in weighted spaces (see e.g. OPIC and KUFNER [18] for imbedding theorems in weighted
Sobolev spaces).

Let us illustrate tho advantage of our approach on the example mentioned already in [3]. The operator

(a)(:) (-)’ D (.()ID()I-D())

w,t considered there on C R’2, where is the square {(z,x2);-1 < z, <
< 1. 1,2}, with

.(, .(, ( for z > 0, > 0, (.
Ixl"(1- z) for Xl > o,z < o.

Tho operator A was considered on the space W’(.,at fro. (.) with u(x) .(x) for a m. It
follows from conditions (1.a) that it has to be

while condition (1.4) (together with (1.6))indicates that we have to choose

a,,7 <

On the other hand if we use the approach described in ts pper, we can void t least for the f6rmulation
of the problem the last restriction and consider more admissible values of the parameters A, and 7.

The first attempt to remove assumption (1.4) and to derive the imbedding (1.7) dictly, without
introducing the intermediate spce W’V(fl) was made by KUFNER and LEONARDI [11], where also
imbedding theorems for weighted Sobolev spaces have been used. In this paper we use weighted spaces
systematically.

The paper is organized as follows. In Section 2 we define suitable function spaces and invite reader’s
attention to some useful imbedding theorems. In Section 3 we formulate various types of 9rowth conditions
on the coecients of the differential operator A from (1.1). Section 4 consists in formulation of the
boundary value problem for the differential operator A as an opetor equation. We show in Section 5,
that it is possible to apply the degree theory in order to solve the corresponding operator equation. In
Section 6 we present ezistence results and Section 7 contains concludin9 remarks and applications.

This paper, which generalizes the results of our preceding work [3], may be regarded as a continuation
of the papers GUGLIELMINO and NICOLOSI [8], DRABEK and NICOLOSI [4, 5].

2 Function spaces

Let m E bI,p E ]l, oc[,f be an open subset of RN(N >_ 1) and u be a family of weight flmctions,. .(x),ll _< ,, i.e. every u is measurable and positive almost everywhere (a.e.) in f. We will
denote by

w....(, f) (2.)

the set of all functions u u(x) defined a.e. in f such that their derivatives (in the sense of distributions)
D"u of order Ic[ < m belong to the weighted Lebesgue space LP(,2), i.e.
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[Notice the difference btween the space W....P(,fl) from (2.1), where the weights a appear at all deriva-

tives D"u, and the space W....’(,fl) from (1.2), where they appear only at DOu with a] m.] If we

suppose that

,,. Lo(fl) for lal m,

then i.....v(t, fl) is a uniformly comcx Banach sce if equipped with the norm

Ilull ....,,. liD nil,.... (2.2)

If we ul)pose in addition, that
r,. c Lo() for I1 < m

then C(fl) is a subset of W....P(r,, ft) and we can define the space

as the closure of C(f) with respect to the norm (2.2). For details concerning the above assertions see

e.g. NICOLOSI [17], GIIGLIELMINO and NICOLOSI [7] or KUFNER and OPIC [12].
For the sake of brevity we will use the following notation. Given two Banach spaces X, Y we will

write X Y or X Y if X C_ Y and the natural injection of X into Y is continuous or compact,
respectively.

Similarly as in the case of classical Sobolev spaces, there are irnbedding theorems for weighted Sobolev
spaces of the type

Wl’V(r,,ft) Lq(w,2) (2.3)

and

W0’P(t, ) -. Lq(w, ). (2.4)

The imbeddings mentioned above follow from inequalities of the form

(2.5)

and

t=l fl

(2.6)

Remark 2.1 For details concerning the conditions on p, q,w, to, t,..., IN which guarantee the validity
of (2.5) and (2.6), we refer to OPIC and KUFNER [10]. Let us emphasize that both possibilities p > q
and p _< q can occur in (2.3) and (2.4) and that in the case p > q these imbeddings are simultaneously
compact, while in the case p _< q, some additional assumptions are needed.

Example 2.1 Let be bounded,/) be locally lipschitzian, 0(x) t,(x) tN(X) (dist(x,O))’\,,(x
(dist(x,O)),$,t q R,$ < p- 1. Then (2.4) holds (and(2.6) holds for any u q C()) if and only if
either

N N
<p<q<,-----+l >0,> Aq-N+Nq-q (2.7)

q P P P
or

<q<p<oc,>Aq-l+q-q.
P P

Moreover, the inbedding (2.4) is conpact if, for p < q, the last inequality in (2.7) is sharp (see OPIC and
KUFNER [18], Theorem 21.5).
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Remark 2.2 We entioned only imbe<ldings of Wl’V(v,). Of course, by a repeated use of (2.3) and
(2.4) we (’an show that similar imbeddings hold also for W....(v, fl) and W’’P(v, fl), respectively, with
m, > 1.

In the sequel we will uso the following hypotheses.

,,pHypothesis 2.1 Fo," u W (v,l))( ov u e W (v, fl)), it is

Du e Lq()(wZ, n) for I/1 < ,,, (2.8)

and

IIDull(),,, _< ell,,ll ....,,,, (2.9)

with independent of u, with some appropriate parameter q(fl) >_ and appvpriate weight function

Remark 2.3 Sinlilarly as in the case of classical Sobolev spaces, it is possible to derive also for weighted
Sobolev spaces imbeddings into spaces of continuous or Hblder-continuous functions. For example, it can

be shown that for p > N the imbedding

W"V(v, 12) C(w,n) (2.10)

holds with an appropriate weight function w, where C(w, l)) is the set of all continuous functions u u(x)
on l for which

Ilullc(,o) sup I(x)u(x)l < o:). (2.11)

Example 2.2 Let Q, Ol,w(x),v(x),i 0,...,N, be as in Example 2.1, p > N. Then the imbedding

Wo’,(, n) c(, n)

holds if and only if
A N

a> l+--
P P

provided A # p- (see BROWN and ePIC [2], where also the questions of compactness of imbeddings of
the form (2.10) and imbeddings into spaces of Hblder-continuous functions are dealt with).

3 Growth conditions

The weighted Sobolev space W....v(v,n) (with v {va; I1 _< -})in which we are looking for the weak
solution is closely related to the growth conditions on the "coefficients" Aa(x,) which appear in the
definition of the differential operator A in (1.1).

Let k k(m,N)be the number of all (different)multiindices c (cq,(2,..., aN) (i.e. g-dimensionM

vectors whose components a, are nonnegative integers) of the length ]a] a + a2 +... +N not exceeding
m. (In other words, k is the number of aH derivatives

ollu(z)D"u() ,

I1 m.) Assume that the function A(x,),x fl, Rk, {; I1 m), satisfies the Camthdo
condition, i.e. it is continuous in for a.e. z fl and meurable in z for every R.
Definition 3.1 For p > denote by p’ the exponent conjugate to p. Let ga Lv’(fl) and c 0

be a constant. We say that the coefficients A of the differentiM operator A from (1.1) statisfy the gwwth
conditions of type A if the estimate

’A(x’f)l < v(z) [g(z)+c ,’5v3 (x),f.v-i] (3.1)

holds for a.e. x fl and every R; la] m.

Definition 3.2 Let q() and wZ, I1 5 m- 1, be the parameters appearing in Hypothesis 2.1, and let go

and c, be as in the foregoing Definition 3.1. We say that the coefficients A satisfy the growth conditions



WEAK SOLUTIONS OF QUASILINEAR ELLIPTIC EQUATIONS 693

o typ< (B) if the e>tima

holds for a.e. x and evory ( ; 1 m.

Definition . Let 9, c, q(fl) and @ be in the foregoing Definition a.2. Moreover, let
I,1 m- l,q(a)’ q(n)/(q()- 1). we say that the roocients A satisfy the rowh condiCmns
((’) if tho following estimatos hold for a.e. x and every ( Nk
(i) For I1

A(.) d(:) ()+ ,.1,-’ +

(3.3)

(ii) for I1 < m- 1,

]Ao(x,) < w-(=) ,(z) + c, Z "S(x)[flq(-) +

Let us denote
N

=m--- (3.5)
P

and suppose that t > 0, i.e. mp > N. Due to Remark 2.3, we can besides (2.8) consider also
itnbeddings of wm’p(v, ) into spaces C(w, ), i.e. for u E Wm’P(v, ) (or for u E Wn’(v, )) it is

Du C(w,) (3.6)

for Igl < and

sup Io()D%()l < 1111,, (3.7)

for ]/] < tc, with > 0 independent of 6 W....(v,f). Taking into account also these imbeddings, we

can modify our foregoing growth conditions of type (A)- (C). For this purpose, let us write c R in the
for,n (a, ), where t {; I1 < gl}, and denote

h(., ) I,().1. (3.8)
Il<

If we denote by h(x, u(x)) the expression

I.’(x)Du(x)l
I1<"

then it is, in view of (3.7),

for u

Ih(x, u)l < llull,,, (3.9)

Definition 3.4 Let us use the same notation as in the preceding definitions. Suppose, moreover, that
!)a L() for lal < a. We say that the coefficients Aa satisfy the growth conditions of type (D), if there
is a positive, continuous, nondecreasing function G(t),t > O, such that the following estimates hold for
a.e. x and every E !k

(i) For I m,
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(ii) fo," ,
_

[a[

_
m- 1,

+ Cc
, <ll<m-

(iii)’for lal <

IA.(x,)I

_
(;(h(,))-() ()/ . ()11(-) /

(3.10)

I
IA(,)I

_
(;(h(,)).(x) 1() + c (x)ll +

(3.2)

+ . (11’()]
Remark 3.1 It is easy to show that the growth conditions of type (D) contain the previous ones ms special
cases (e.g., we set G(t) if a 0 and, consequently, the set of with [[ < a is empty). Therefore,
we can concentrate on Definition 3.4.

4 Operator representation

Let us consider a boundary value probletn for the partial differential equation

Au f in f/, (4.1)

where A is the differential operator of the form (1.1). Let V be a closed vector subspace of the weighted
Sobolev space Wm’p(lJ,)from (2.1) such that

wy,(, )c_ v c_ w",(,,). (4.2)

The choice of V depends on the boundary conditions, which appear in our boundary value problem.
Roughly speaking, V consists of all functions from W’’P(u, f) which "satisfy the homogeneous boundary
conditions" it is V W"P(u,f) if we consider the Dirichlet problem for the equation (4.1), and it is
V Wm,P(,, ) if we consider the Neumann problem.

For j b/we shall write
n u {Du; Ifll J}.

Let

a(u,)= Z /Aa(x,u(x) ,D’u(x))DT(x)dx (4.3)

be the form (linear in 9) ssociated with the differential operator A.

Definition 4.1 Let u0 6 W’’v(,) be a fixed function. A function u u0 + v, v V, satisfying the
integral identity

+ v,) / f(x)9(x)dx (4.4)a(uo

for eery V, will be called the weak solution of the nonhomogeneous boundary value problem for the
equation (4.1)

Remark 4.1 In order to avoid tedious calculations with expressions invol-
ving the terms uo + v, Da(uo + v), etc., we will suppose in the sequel that u0 0, i.e. instead of (4.4)
we will be looking for the weak solution of the homogeneous boundary value problem, i.e. for the function
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,(u, ) / f(.r )(x)d.r (,1.5)

fi -w,y . TI re, dot should boar in mind that thp simpl shif u uo + u tranr
rpdt or the homogeneous problem to existence results for lm nonhomogeneous one.

Lemma 4.1 Lt Hc fimction. A(x,) satisf hc ffromth conditions of pe (A),(B),((’) or(D)
Dfinztio,. 3.1-3.4). Then the form a(u, ) from (4.3) is well-defined for any u, W....P(t/, Q). Moreover,
th,,’ cx,st. a continuous posztivc function H(t) afi,,d i,, [0, [ s,,ch that

la(u,)l n(llll .....,.)llll .....,.. (4.6)

Proof It is sufficient to consider the growth conditions of type (D)(see Remark 3.1). Then it follows
from 3.10)(for I1 "*) hat

L
IA. (z, u(x) e’u(z))

Il=m

+c. (x)lDu()l ,’

and consequently

IA.(x,u(x) D’u(x))D",,o(x)ldx <_

/+ a(h(,()))"()()()l()l+

It follows from the monotonicity of the function G and from (3.9) that

a(h (, u(m))) a(cllll,,). (4.8)

We will estinate the integrals in (4.7) using (4.8) nd the HSlder inequity with the exponents p nd f"

Ia (z, u(z) ,O())O()la

G(cllull,n,)llOll, [llgllp’ + (4.9)

Sinc w hve IIOull,, Ilull ...., by definition of the norm in wm’(,) and IIOull<}, llull,p,
due to Hypothesis 2.1, we obtain frown (4.9)

(x, u(x) ,D’u(x)) D"()ld 5

IIOllp,n.(llull ....,) IIll,,,n(llull ....,.)
for I1 m, where H(t) is some positive continuous function.

(4.7)

(4.10)
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A ,similar estila,te can i)e derived l)y analogous arguments for tel <_ la[ m- from the condition

(3.11) (notice that we use the liSldar inequality with the eXl)onents q(a),q(o)).
Finally, for [a[ < gt. we use the condition (3.12) which leads to the estimate

D’" u( x

(.)

I/I

+ c, / G (h(x, u(x)))w(x)lD’(x)lw(x)lDu(x)lq()dz.

Since D C(w, ) for ]hi < a, (see (3.6)), we obtn from (4.11), (3.6)

D"u(x )D"(x )]dx

G(cllull ....,).sup I()D(:)I ]1111 + (4,12)

+ c. llDull,.o + c IID%IIq(),#

Now, using the fact that sup ]wa(x)Da(x)] ]]...., for ]a] < (see(3.7)), we obtMn from (4.12)

an estimate of the forn (4.10), but for ]a] < .
Since

]a(u, )] [ ]A(x, u(x),..., Du(x))D9(x)]dx,

we finally obtMn the estimate (4.6) taking

Since a(u, cp) is linear with respect to , the expression a(u,.) represents the value of a continuous
hnear functional F E V* (the dual space)-

(, v) (F, v)
(here (., .) denotes the duality between V* and V). It follows from Lem.ma 4.1 that

(4.13)

IIFIIv" _< H(llullv).
The dependence of F on u (cf.(4.13)) will be expressed by writing

F=Tu.

(4.14)

Hence we defined the operator T V V* by the relation

a(u, o) (Tu, ,,o>, u, , e V. (4.15)

It follows froin (4.14) that
IITullv, < H(llullv)

which means that the operator T is bounded (i.e. T maps bounded sets in V onto bounded sets in V*).
Using the properties of the Nmytskii operator acting between weighted spaces we are able to prove

also the continuity of T.



WEAK SOLUTIONS OF QUASILINEAR ELLIPTIC EQUATIONS 697

Proposition 4.1 Lt the function. A. .l.(x,) dtJined on Q x I{, satisfy the (’arathdodory condtmTt.
and one of the 9ro’u,lh conditions of the typc (A),(B),((.’) or(D). Then thc operator T" V V* dcfi,.ed
by (4.15) is boundtd and continuous.

Tho proof follows the ideas of the proof of Theorem 3.5 in [3]. Let us only emphasize that due to our

assuptions we can identify the space V with a closed subspace of the product space

WhOl’O

H X, (4.16)P

Xf LP(:,) for I[1 m,

X: Lq(/)(/,f) for _< I1 _< ,,- t, (4.17)

x c(, ft) for I/1 < .
Note tiat ,q m- and if < 0 then we use only the first two spaces in (4.17). Let us also recall
that the norm in C(, fl) is defined by (2.11) and in fact it is the L-norm of vu.
Remark 4.2 According to the definition of the operator T (see (4.15)) a function u V is a weak solution
of our homogeneous boundary value problem for the differential equation (4.1) if the identity

<Tu, 2) [ f(x)(x,)dx (4.18)

holds for every q V. Moreover, we can suppose that f V*, replace the integral on the right-hand side
of (4.18) by (f, ) and look for u V satisfying

<Tu, p) (f p) (4.19)

for any V. Since (4.19) can be rewritten as the operator equation

ru f (4.20)

for our operator T V V’, we thus obtain a more general setting of our problem: "Find v e V such
that (4.19) holds for any V."

Remark 4.3 To be more specific, we will suppose that the right-hand side f in (4.1) is of the form

/= (-1)IIDOf,, (4.21)

where the family {f; m} satisfies the foUowing conditions

p’ l-p’fa e (Ln(ua, a))* L (,, fl) for I1 m;

f (Lq()(w,,Q)) Lq(")’(-q(")’,Q) for , S I1S m- 1; (4.22)

fa C 51(1,) C (L(,,fl)) for a < 1.

Then the operator equation (4.20) means that the integrM identity

f A(x’u(x)"’"Dmu(x))D"(x)dx

f f"(x)D"(zldz

holds for every V.

5 Degree of the mapping

Our existence results are bsed on the solvability of the operator equation (4.20). The main tool for
proving the existence of the solution of (4.20) will be the degree theory for 9eneralized monotone mappings
developed by BROWDER [1] and SKRYPNIK [19]. However, in order to apply this theory, we need to

prove that the operator T V V* satisfies the so called condition a(V) (sometimes also called condition
(s)+).
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Definition 5.1 Tho Ol)erat-r T V V* is said to satisfy roudition ,(V) if the assunptions

un uo (weakly) in V for

lira sup(Tu,,, u,- ’uo) _< 0

itlply the S|l’Ollg col|vergellce u, u0 in V.

We will need sevorM hyl)otheses.

Hypothesis 5.1 The compact imbedding

hohl..

V W "P(v,t)

Rdmark 5.1 Note that the symbol v means {va; Ic{ _< m} in the space on the left-hand side in (5.3) and

{v; ]al _< m- l) in the space on the right-hand side in (5.3). The imbedding (5.3)is a natural one. It
holds in the case of classical Sobolev spaces (i.e. if v(x) 1, ]a <_ m) if fl is bounded and its boundary
Of/is lipschitzian.

Let us denote
H ’q(w,f) {u;Du xa, I/1 _< m- 1},

where X are defined in (4.17).

Hypothesis 5.2 The compact i,nbedding

hol&.

V H"-z’q(w, ) (5.4)

In further hypotheses, we shall write the basic vector {a; I/] <_ m} Rk in the form

where
( {(; I/l m} R with ( ,
,t {,ta; a I1 m- 1} Rk with 0 ,

{a; I1 < ) with a a.
< 0, we shM1 write simplyIf g m-

(,,()
and the same notation will be us if it will be unnessary to distinguish B with JJ < a and a with

[,,- 1].

Hypothesis 5.3 Let G be a continuous, positive, nonincreasing function on [0, o0[, G2 a continuous,

positive, nondecreasing function on [0, oo[. We shall suppose that for every (, rl, ) R and for a.e.

x f, the following ellipticity condition holds:

(5.5)

where h(z,n) is defined by (3.8). /f tq < 0, we put G(t) G2(t) c with c a positive constant.

Hypothesis 5.4 We shall suppose that the differential operator A from (2.1) is znonotone in its principal
part, i.e. for every (rl,() tk, (7,) Rk with ( , and for a.e. x f, the following monotonicity
condition holds:

[A.(z; r/, () A.(x; ’1, )]((. ) > 0. (5.6)

Hypothesis 5.5 The set 12 has a finite Lebesgue neasure.

13
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Proposition 5.1 Let llypothc.r. 5.1 5.5 bc satzsficd and let the’ cocfficzents
9rowth condition. of type (D). Then the operator T defined by (4.15) satisfies condition (V).

The proof follow, the ideas of the proof of Lemma 4.4 in [3].

Remark 5.2 The properties of the mapping T V V* just derived allow us to introduce its (legroo

Deg[T; Bt, O] (5.7)

with respect to the ball B, {u V;llul] ....p._< R} and the point 0 V*.

For details concerning the degree (5.7) see SKRYPNIK [19]. In the foregoing steps we have shown that

Deg[T; BR, 0] is well-defined and has the properties stated in [19].

6 E.xistence results

In this section we present several existence results concerning the weak sol-
vability of homogeneous boundary value problem for the equation (4.1). Recall that the right hand side f
is assumed to be of the form (4.21). Recall also that the results of this section can be easily extended to
the case of nonhomogeneous boundary value problem (cf. Remark 4.1).

Let us point out that we dealt only with the most general growth conditions of type (D) (see Definition
3.4). However, existence results hold also (with obvious modifications) for the weaker growth conditions
compare with Remark 3.1. For the simplest growth conditions of type (A), the existence of a (weak)

solution was proved (for the Dirichlet problem) in KUFNER and ePIC [la] (see also KUFNER and
S)i.NDIG [14], Section 17).

Note also that Q may be possibly an unbounded domain in RN. However, we have to assume that
meas <

Theorem 6.1 Let T" V V* be deftned by (4.15), the coefficients A(x,) satisfy the qrowth condition.s

of type (D) and the right-hand side f is of the form (4.21). Let us assume that Hypotheses 5.1 5.5 are

satisfied and, moreover, assume that there exists a number R > 0 such that

Z /[A(x,u(x) D’"u(x)) f(x)]Du(x)dx >_ 0 (6.1)

holds for every u V, Ilull.,,, R.
Then the undary value pblem for the diffential equation (4.1) has at least one weak solution u V

such that Ilull ....,. R.

Proof Let us introduce the operator TI V V* by

Tyu Tu- y.

Then the condition (6.1) can be written as

(T, ) 0. (.)

If there is u V with Ilull,,p, R such that Tyu 0, then Tu f and our "sertion is proved {cf.
Remark 4.3).

If there is no such u V then condition (6.2) and Theorem 1.3.4 in SKRYPNIK [19] imply that the
degree of T] satisfies

D[T; B, 0] .
But then it foows from the basic property of the degree that there ests at least one u Ba such that
Tyu 0, i.e.

Tu=f.

Remark 6.1 A useful tool in the Leray-Lions theory of monotone operators is the concept of coercvity.
An operator T" V V" is called coercive on V if



00 P. DRABEK, A. KUFNER AND F. NICOLOSI

lira
(Tu, u) . (6.3)

Obviously, this condition can help us to overcome the difficulties arising if we would like to verify the
condition (6.1). Therefore, let us introduce an additional assumption.

Hypothesis 6.1 5,’uppos that the a" positive constants c, c2, c3 such that the following coercivity con-
dition holds for all R and a.e. z :

Z A,,(z,), >_ c Z ’’()1"1’ /
I,*1<,,* I,,,I (6.4)

whe. 0 is the zero multiindex (0, 0 ,0).

Lemma 6.1 Let Hypotheses 5.1 and 6.1 be fulfilled. Then the operator T V V* defined by (4.15)
.atisfies (6.3).

Proof It follows frown Hypothesis 5.1 that the following iznbeddings hold:

V Wm-’v(u, ft) LV(vo, ft).

Applying Proposition 4.1 in LIONS [16], we obtain that for any e > 0 there exists c(e) > 0 such that for
every u V

i.e.

Consequently, we obtain that for e > 0 small (0 < e < 2-v) there is a constant ct > 0 such that

I1<,,,- n I,,1=,,, h

+ /Iu(z)lvo(z)dz)
and hence

,,ul,,,,--
I,l<,,,,

"Dul’’<c (,=,,,I "Dull’+
+ II,IIL,o

with cs > 0 independent of u V. This inequality together with (6.4) yield

and since p > 1, we have immediately (6.3)
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Remark 6.2 Intead of (6.4) wo can also use the modified rocrrivity condition

+ c(,)lol

with q > an(I a suitable woight fimction w w(x) provided the imbeddings

V W "V(v, fl) L’(,fl)

take place. Indeed, similarly as in Lemma 6.1 we obtain that

and consequently

I111,,,, s c( IIDII,. + IIII,).

Due to the second imbedding in (6.6) we have

I1

which together with (6.7) inply that the expression

IIOll, + I111, II1111

defines a norm in V equivalent to Illulll,,,..

(6.5)

!6.6)

It is

(Tu, u) > c, Z I va(x)lDau(x )]r’dx +
lal=m f

+ cz /lu(x)lq(x)d ca > (.8)

>_ min(c, c)( IIOull, / Ilull,o,)
I1=,,

: with , (fn I,()lo()a/,For p < q it follows from Young’s inequMity (in the form b _< -V+-
I111,, - )that

Thus we obtain from (6.8) and (6.9) that

_> lllulll’ 10

which again implies (6.3).
So we have the following result.
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Theorem 6.2 7"/l boundary value problem for the differential equation (4.1) in V has [or cvcr f V" at

ha.t o,c wak .solution u I," if wc rcplacc in Thcorm 6.1 the cotdition (6.1 b th cocrcivity conditton

(ft. 1) or provided the imddings (6.6) hold with q > p by the mified cvcivit condttion (6.5).

Proof Since (6.4) or (ft.5) imply (ft.3), we have that

(Tlu, u) (Tu f, u) >

(f V* is fixed). Consequently. the condition (ft.1) is satisfied for R > 0 large enough and the assertion
folJows from Theorem 6.1.

7 Remarks and examples

Remark 7.1 A comparison of the growth conditions mentioned in Section 3 with the growth conditions
in [3], Subsection 3.2, gives a good illustration of the broader possibilities offered by the method described
here. While the use of spaces W’,v(, Q) in [3] with no weights in lower order terms (nore precisely, with
w,ights ,(z) l, m- 1) owed only changes in the oerof the growth (hke with

r > p), here we can both change the oer and introduce weights different from , 1, i.e. introduce
degeneration or singularity (see terms hke ()llaZ) in (3.12)).

Let us consider e.g. the operator A from Example 5.7 in [3] and the Dirichlet problem:

(A=)() (-)’" D(.()ID=()I,-2Du())

with the weight function, ,(z) from (1.8). Then we can add, according to [3], lower order terms (say
of order 2m- 2) of the form

(-1) D"(IDu(x)lq-Du(x)) (7.2)

with < q < 2p- for < p < 2. However, the approach described in this paper ows to add e.g. a
lower order term of the form

(-1:-’ D"(()I"=()la-D:=()), (7.3)

where the weight function h a similar structure ,, i.e.

for z 0

() 0( ,) fo, , > 0, > 0,

Iz21(- z) for z > 0, z2 < 0

with vMues $0,70,0 connected with the vMues p, q, A, 7,g- oughly speaking it must be

o > + -q-
P P

(with $ frown (1.S)).and similarly Mso for 0 a 7o.

Remark 7.2 It should be emphasized that the decision about the weight functions t:(z) which appear

in the definition of the space bV’V(,,) in terms of lower order (a S m 1) depends on the weight

functions ,(x) for I1 m (i. e. appearing at the derivatives of order m). An important role is played

here by HaZy-type inequalities, i.e. inequMities of the form

Iv(x)lq(x)dx S c
,= Ox, x) ,,(x)dx (7.4)
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We proceed in the following way: We use inequality (7.4) (,say, for v E C(f), if we consider the Dirichlet

prol)lom) so that we have the iml)edding

w’(,) m(,). (7.5)

Moreover, we sume that the imbedding (7.5) is COmlmCt.
Now, we take for v a derivative Dau, fl fixed, / m- l, and choose for the weight functions t6(x)

on the right--hand side of (7.4) the weight functions i/(x), la] m, appearing in the definition of the
space W v(t,) (see(5.3)). More precisely, if we denote, for [J (,[J ,),/ m- 1, by 3()
the multiindex a (a,a2,...aN) with a =/J for # j and a, [J, + 1, then lal m and we choose
t6(x) =//a(,)(x). Then we can determine the weight function w(x) on the left-hand side of (7.4) as i//(x) if

q p (with (x) appearing in the definition of the space W....(,)) and (x) if q q() # p (with
;(x) appearing in the definition of the space H ’q(w,), see (5.4)).

By this way we determine the weight fltnctions B(x) and w#(x) for [/31 m- 1, and anMogously we

determine the weight functions appearing at the derivatives of order m- 2 etc.

Example 7.1 Consider again an operator A whose princip part is of the form (7.1), i.e.

with ,(x) u(x). Let be a plane down,n, {(z,z2);0 < z < 1,0 <
< z < b} with 0 < b < , and choose the weight functions u(z) in the form

,(z) u,(z,,z)= z, A a reM number.

In this ce the conditions

are obviously fulfied. Let us consider, for simpcity, the Dirichlet problen. Then the bic space V is

just W’r(, a) and we can nake considerations for v from the dense set C().
The Hardy inequity

IV(Xl,x2)lqxdx2 c
O x,x2)lVxdx2 (7.6)

holds for v C() with a constatnt c > 0 independent of v and indendent of z, provided

A#p-1 and g>A+-q-1 (7.7)
P P

(see Example 6.8 in [18]).
(i) Let us determine the weight functions Z(z), Il m- 1. Take q p in (7.6), i.e.

it follows from (7.6) that

A # p- 1, p > A-p; (7.8)

--( .(.)] d
This is inequality (7.4) with w(x) x, q p, which indicates that if we put v Du, 11 m- 1, we
can choose

,,(1 .
Hence, we have

D’u e LV(’o,, f) with :(z) x for lal m,

Dfu q. LV(t//,f) with t/(x)= x for I/1 -- 1,

where A and p satisfy (7.8). Analogously we can show that
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provided
It#P- 1, b > t-p,

otc. By this l)rocetlure, we construct the space

w....v(u, fl). Let us emphasize that the imbedding corresponding to the in-
or more precisely, the space "0

equality (7.6) is compact (see Example 7.10 (ii) in [18], where the case A < p- is discussed; the

$ > p- follows similarly by using Example 6.8 (ii) in [18]). Hence, we have sinultaneously the comct
imbedding ....v ,v u, ).v w (,,) ,,0

(ii) If we would like to determine the space H .v(,) (satisfying Hypothesis 5.2), i.e. the weight

functions for q # p, we have to differ two cases.

(a) < q < p < . In this case we obtain again a Hardy-type inequity similar to (7.9). Namely, we get

Iv()la()dx c () + () (x)d (7.0)

with (z)= z. But now g is deternfined by (7.7), i.e.

O La(,) for I1 -
withv(x)=z’, g>A+ -q-1.

P P

Indeed, using (7.6) and the HSlder inequity with the exponent r > 1, we immediately obtn formula

(7.0).
Similarly we can determine wa(z) for I1 m- 2, m- 3 etc.

(b) < p < q < . In this ce we cannot use the Hlder inequity. We have to use more comphcated

procedure described in [18], Subsection 12.13. We will not go into detls here. Let us only mention that

we agn obtn an inequahty of the form (7.10) with v(z) z but now under the additionM condition

>-
p q 2

and with

q

(iii) Due to these investigations, we can consider lower order coefficients of the form

and similarly for Ifll < m- l, with p depending on q and p.

Remark 7.3 In Example 7.1, we investigated the Drchlet problem on the plane domain =]0, l[]0, b[
and considered the Hardy inequality (7.6) for functions v C(t). Let us point out that due to the fact
that in (7.6) only the integral ]0,b[ for x2 is of importance, the same results can be derived if we consider
Dirichlet boundary conditions only on the top and thc bottom of our rectangle , i.e., for (x,z)
with z 0 and z b.

Moreover, we can consider Dirichlet boundary conditions only on the bottom, z2 0 (or only on the
top, z b) but then we can consider only values A such that A < p- (or A p- 1) instead of A p- 1.

Let us add one simple example illustrating the modified coercivity condition (6.5).

Example 7.2 Let us consider the Dirichlet problem for the second order equation of the type (4.1), where

(Au)(x) +

(here we use "usual" indices instead of multiindices). We have
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Ao(x. o,, N) (z)1o1"-’6,
for 1,2,..., N,

with p,q > 1. We use the Sl)aCO V Wo’P(u, fl) with v {uo, U b’N} where vo is chosen in such a way

that the compact imbedding
W’P(,,, fl) L’(,’o, )

holds. Th(’ coercivity condition (6.4) has the form

i.e., for our special choice (7.11),

N N

,,()151p + co(z)l01 > cl ,(.)1,1 + cu0()l01v c3.
t=0

(7.12)

Since there are no obvious connections between co(x) and u0(x),q and p, we cannot guarrantee that (7.12)
is fulfilled for every E RN+I.

On the other hand, the modified coercivity condition (6.5) is fulfilled. Indeed, it has the form

N N

E A,(z,o,,, ), > c, y ,,()1,1’ +
t=0 t=l

/ c()lol c3

and it is obviously satisfied with
c1=c2=1,c3>0.

To assure the existence of a weak solution by means of Theorem 6.2, we have to suppose that the Hardy-
type inequality (7.4) holds for every u E V Wd’V(v, ), that the corresponding compact imbedding

Wo’V(t/, f) ,-+,-- Lq(co, f)

holds, and further that q > p.
If we suppose that the following inequality holds:

N

/lu(x,lVt,,o,x,dz< c E/lOx,(x,l’r,,(x)dx, (7.13)
fl ,=1 fl

then we need not to assume that p < q. Indeed, since the right hand side in (7.4) is an equivalent norm in
V, we have that

N

i=1 i2

+ [ A0(, =(), V())=()
f

Z xi(X) t/l(x)dz -b lu()lqco(x)dx >

and hence
lin

(Tu, u) .
Note that in (7.13), we considered a special family u of weight functions, i.e., u {Uo, U,...,uU}

with ua u2 ..... UN. There are several results concerning the validity of inequality (7.13), called also

the weighted Friedrichs inequality. See e.g., EDMUNDS and OPIC [6] for u0, u having singularities or

degeneracies only at the boundary and satisfying certain (rather complicated) additional assumptions.



706 P. DRABEK, A. KUFNER AND F. NICOLOSI

Acknowledgement: The first lwo authors have been partially supported by the Grant Agency of (’z,cl

l(,i)ui)lic, (;rant No. 201/94/00, whi(’h is here gratefllly acknowledged.

References

[1] F. E. BROWI)ER, Noh,.car clhptic boundary value problems and the generalized tolmlogwal degvt,
11111. Amor. Math. Society 76 (1970), pp. 999 1005.

[2] R. (’. BROWN and B. OPI(, Embeddin!ls of weighted Sobolev spaces into space. of contmuou, fun’-
ton.. Prec. R. Soc. London A (1992) 439, pp. 279 296.

[3] P. I)RBEK, A. KUFNER and F. NI(’OLOSI, On the’ solvability of degeeratcd quasiline’ar ’llipti"
quatwns of higher orlcr, .1. Differential Equations 109 (2) (1994), 325-347.

[-] P. DRBEK and F. NICOLOSI, 5’olubilit( des probldmes elliptiques ddg&drds d’ otvlerc .upv:ricur a

l" atde du thdorem(’ de Leray-Lious, (;. R. Acad. Sci. Paris 315, S6r. (1992), pp. 689 692.

[5] P. DR/i,BEK and F. NICOLOSI, Existence of bounded solutions for some degenerated quasilinear
t’lliptc equations, Annali Mat. Pura Appl. (IV), CLXV (1993), 217-238.

[6} D. E. EDMUNDS and B. OPIC, Weighted Poincard and Friedrichs inequalities, J. London Math. Soc.
(2) 47 (1993), pp. 79- 96.

,[7] F. GUGLIELMINO and F. NICOLOSI, ,ulle W-soluzioni dei problemi al contorno pet" opemtori
ellittici degeneri, Ricerche di Matematica 36 (1987), pp. 59 72.

[8] F. GUGLIELMINO and F. NI(OLOSI, Teoremi di esistenza per problemi al contorno relatim alle
equazioni ellittiche quasilineat, Ricerche di Matematiea 37 (1988), pp. 157- 176.

[9] E. HEWITT and K. STROMBERG, Real and Abstract Analysis, Graduate Texts in Mathematics 25,
Springer Verlag Berlin Heidelberg 1975 (Third printing).

[l 0] A. KUFNER, Weighted Sobolev ,Spaces, 2nd edition J. Wiley 2 Sons, Chichester-New York-Brisbane-
Toronto-Singapore 19/q5.

[11] A. KUFNER and S. LEONARDI, Solvability of dege.nerate elliptic boundary value problems: Another
approach, Mth. Bohemica 119 (1994), 255-274.

[12] A. KUFNER and B. OPIC, How to define reasonably weighted 5’obolev space, Comment. Math. Univ.
Carolinae 25 (1984), pp. 537 554.

[13] A KUFNER and B. OPIC, The Dirichlet problem and weighted spaces II, (2a.s. Pst. Mat. 111(1986),
pp. 242-253.

[14] A. KUFNER nd A.-M. SNDIG, Some Applications of Weighted Sobolev Spaces, Teubner Texte zur
Math. 100, Teubner Verlag, Leipzig 1987.

[15] S. LEONARDI, On imbedding theorems and Ndmytskii operators in weighted Sobolev spaces (to ap-
pear).

[16] J.-L. LIONS, t,quations differentielles operationelles et probldmes aux. limites, Springer-Verlag,
Berlin-GiStingen-Heidelberg 1961.

[17] F. NICOLOSI, Soluzioni deboli dei problemi al contorno per operatori parabolici che possono delener-
are, Annali Mat. Pura Appl. (4) 125 (1980), pp. 135 155.

[18] B. OPIC and A. KUFNER, Hardy-type Inequalities, Pitman Research Notes in Mathematics Series
219, Longman Scientific Technical, Harlow 1990.

[19] I. V. SKRYPNIK, Nonlinear Elliptic Boundary Value Problems,’Teubner Texte zur Math. 91,
Teubner-Verlag, Leipzig 1986.


