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1 Introduction

In the paper DRABEK, KUFNER and NICOLOSI [3], the problem of the existence of solutions of boundary
value problems for higher order nonlinear degenerated elliptic equations was investigated. The underlying
differential operator of order 2m (m > 1) was supposed to be in the divergence form

(Au)(z) = Y (-)IDAs(z,u(z), ..., D™u(z)),z € R CRY, (1.1)
la|<m

and the weak solutions have been sought in a special weighted Sobolev space
W™P(v,Q) (1.2)

(1 < p< 00,v = {Va,|a] = m} denotes a collection of weight functions), normed by

(Z /|D°U(x)l”va(z)dz+ > /ID"‘u(z)P’dz);.

laj=m g laj<m
The weight functions v, = va(z) which describe in a certain sense the degeneracy or singularity of the
operator A from (1.1) appear only on the highest (m-th order) derivatives. The assumptions
L
Vo € Ll]oc(Q)$ Va - € Llloc(Q) (13)

guarantee that the space W™P(v, ) is well defined and contains C§°(2) as a subset.

In addition to (1.3) the assumption
vl e L5(Q). (1.4)

with a suitable s > 0, was considered in [3]. Then the imbedding

Wm‘p(l/,ﬂ) - Wm.m(Q) (1.5)
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with pr = ps/(s + 1) allowed us to reduce all considerations in [3] from the weightcd Sobolev spaces
to the nonwewghted ones, and consequently, to use the well-developped apparatus of the classwcal (i.e.
nonweighted) Sobolev spaces (imbedding theorems etc.). Moreover, the assumption

S N .
s> —
» (1.6)
ensured the compactness of the imbedding

W™P(p, Q) — Wn=tr(Q). (1.7)

However, the assumption (1.4) (together with (1.6)) is a “global” one in contrary to the assumptions (1.3).
Hence (1.4) is rather restrictive and excludes a big class of weight functions appearing in practical problemws.
Therefore, it is the iutention of this paper to remove the assumption (1.4) and to work ezclusively in
werghted Sobolev spaces, avoiding the “deviation” via classical Sobolev spaces expressed by the imbedding
(1.5). The information available about the properties of weighted Sobolev spaces allow us to handle the
problem directly in weighted spaces (see e.g. OPIC and KUFNER [18] for imbedding theorems in weighted
Sobolev spaces).

Let us illustrate the advantage of our approach on the example mentioned already in [3]. The operator

(Au)(z) = (=)™ 3" D* (v(z)| D u(z)[P~2D*u(x))

laj=m

was considered there on Q C R?, where Q is the square {(z1,z2);-1< 2, <
< l.r=1,2}, with

1 for z; <0,
v(r) = v(xy,23) = z)\(l —xy)? for z; > 0,2, > 0, (1.8)
|z2[#(1 = z1)Y for z; > 0,22 < 0.

The operator A was considered on the space W™P(v,Q) from (1.2) with v,(z) = v(z) for | = m. It
follows from conditions (1.3) that it has to be

/\7#61_171)_1[

while condition (1.4) (together with (1.6)) indicates that we have to choose

Ap,y < g-

On the other hand if we use the approach described in this paper, we can avoid — at least for the formulation
of the problem — the last restriction and consider more admissible values of the parameters A, and 7.

The first attempt to remove assumption (1.4) and to derive the imbedding (1.7) directly, without
introducing the intermediate space W™?1(Q) was made by KUFNER and LEONARDI (11}, where also
imbedding theorems for weighted Sobolev spaces have been used. In this paper we use weighted spaces
systematically.

The paper is organized as follows. In Section 2 we define suitable function spaces and invite reader’s
attention to some useful imbedding theorems. In Section 3 we formulate various types of growth conditions
on the coefficients of the differential operator A from (1.1). Section 4 consists in formulation of the
boundary value problem for the differential operator A as an operator equation. We show in Section 5,
that it is possible to apply the degree theory in order to solve the corresponding operator equation. In
Section 6 we present ezistence results and Section 7 contains concluding remarks and applications.

This paper, which generalizes the results of our preceding work (3], may be regarded as a continuation
of the papers GUGLIELMINO and NICOLOSI [8], DRABEK and NICOLOSI [4, 5].

2 Function spaces

Let m € N,p € ]1,00[,Q be an open subset of RV(N > 1) and v be a family of weight functions
Vo = Va(z),|a] < m, le. every v, is measurable and positive almost everywhere (a.e.) in Q. We will
denote by

W"P(v,Q) (2.1)
the set of all functions v = u(z) defined a.e. in § such that their derivatives (in the sense of distributions)
D*u of order |a| < m belong to the weighted Lebesgue space LP(v,,Q), i.e.
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L
P
1 D%u||p, = | D w(x)|Pro(z)de | < oo.
Pva
Q

[Notice the difference between the space W™ (1, Q) from (2.1), where the weights v, appear at all deriva-
tives D"u, and the space W™ (v, Q) from (1.2), where they appear only at Du with |a| = m.] If we
suppose that

Va ”l LY Q) for |a| < m,
then W™P(r, Q) is a uniformly convez Banach space if equipped with the norm
5
el = (2 1D ul}, ) : (2:2)

la]<m

If we suppose in addition, that
Vo € L},.(Q) for |a| <m

then C'§°(Q) is a subset of W™ (v, Q) and we can define the space

Wy (v, Q)
as the closure of C§°(Q) with respect to the norm (2.2). For details concerning the above assertions see
e.g. NICOLOSI [17], GUGLIELMINO and NICOLOSI {7] or KUFNER and OPIC [12].

For the sake of brevity we will use the following notation. Given two Banach spaces X,Y we will
write X — Y or X << Y if X C Y and the natural injection of X into Y is continuous or compact,
respectively.

Similarly as in the case of classical Sobolev spaces, there are imbedding theorems for weighted Sobolev
spaces of the type

WiP(y,Q) & LI(w, Q) (2.3)

and
WP (1, Q) & L(w, Q). (2.4)
The imbeddings mentioned above follow from inequalities of the form

1

(/ [u(z)|"w(z)dz) < C(/ |u(z)|Pro(z)dz +
Q Q
/ |7@) u.(z)dz)

1 1

q N P
(/ |u(a:)|qw(x)d:t) <C ( u.(z)dz) . (2.6)
Q =1q

Remark 2.1 For details concerning the conditions on p, g,w, Vo, 1, ..., VN Which guarantee the validity
of (2.5) and (2.6), we refer to OPIC and KUFNER [10]. Let us emphasize that both possibilities p > ¢
and p < ¢ can occur in (2.3) and (2.4) and that in the case p > ¢ these imbeddings are simultaneously
compact, while in the case p < ¢, some additional assumptions are needed.

(2.5)

i=1

and

Example 2.1 Let Q be bounded, 39 be locally lipschitzian, vo(z) = v1(z) = ... = vn(z) = (dist(z, Q) ,w(z
(dist(z,09))*, A,k € R,A < p— 1. Then (2.4) holds (and(2.6) holds for any v € C§°(Q)) if and only if
either N N
q q
1<p<g<oo,———+120,k>2A=-N+N=- 2.7
p<gq PR » » 9 (2.7)

or
q 9
1<g<p<oo,K>A=—14=--4q.
p p

Moreover, the imbedding (2.4) is compact if, for p < g, the last inequality in (2.7) is sharp (see OPIC and
KUFNER (18], Theorem 21.5).
a
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Remark 2.2 We mentioned only imbeddings of W1?(1,9). Of course, by a repeated use of (2.3) and
(2.4) we can show that similar imbeddings hold also for W™?(v, Q) and Wy"P(v,Q), respectively, with
m> 1.

In the sequel we will use the following hypotheses.
Hypothesis 2.1 For u € W™P(1,Q)( or u € W)"P(r,Q)), it is

DPu e L) (wy, Q) for |B] < m (2.8)
and

1D ully(py0s < Eslltllmpa (2.9)

with ¢y independent of uw, with some appropriate parameter ¢(3) > 1 and appropriate weight function wg.

Remark 2.3 Similarly as in the case of classical Sobolev spaces, it is possible to derive also for weighted
Sobolev spaces imbeddings into spaces of continuous or Hélder-continuous functions. For example, it can
be shown that for p > N the imbedding

WP(y,Q) = C(w, Q) (2.10)

holds with an appropriate weight function w, where C'(w, 2) is the set of all continuous functions u = u(z)
on ) for which
' llellew,ay = sup [w(z)u(z)| < oo. (2.11)
€N

Example 2.2 Let 2,09Q,w(z),v(z),i =0,...,N, be as in Example 2.1, p > N. Then the imbedding
Wo (1, Q) = C(w,9)

holds if and only if
N

A
K>S -14=
P P
provided A # p— 1 (see BROWN and OPIC [2], where also the questions of compactness of imbeddings of

the form (2.10) and imbeddings into spaces of Holder-continuous functions are dealt with).
a

3 Growth conditions

The weighted Sobolev space W™?(v,Q) (with v = {v,;|a] < m}) in which we are looking for the weak
solution is closely related to the growth conditions on the “coefficients” A,(z,&) which appear in the
definition of the differential operator A4 in (1.1).

Let k = k(m, N) be the number of all (different) multiindices a = (a3, az,...,ay) (i.e. N-dimensional
vectors whose components a, are nonnegative integers) of the length |a| = a3 + a3 +. ..+ an not exceeding
m. (In other words, k is the number of all derivatives

o dllu(z)
D) = sosrgem. Laeam

|| < m.) Assume that the function Aq(z,£),z € Q,£ € R*, € = {€s; 8| < m}, satisfies the Carathéodory
condition, i.e. it is continuous in £ for a.e. = € Q and measurable in z for every £ € R*.

Definition 3.1 For p > 1 denote by p’ = ;;Ll the exponent conjugate to p. Let go € LP'(Q) and ¢, > 0
be a constant. We say that the coefficients A, of the differential operator A from (1.1) statisfy the growth
conditions of type (A) if the estimate

a2, ) < vE(2) |ga() + e 3 42 (2)lE5P (3.1)

181<m
holds for a.e. z € Q and every £ € R¥;|a] < m.

Definition 3.2 Let ¢(8) and wg, |8] < m — 1, be the parameters appearing in Hypothesis 2.1, and let g,
and c4 be as in the foregoing Definition 3.1. We say that the coefficients A4 satisfy the growth conditions
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of type (B) if the estimate

[Au(2, O] < vE () |galz) + ea D vf (2)IEP7" +
1B3|=m

tea 3 Wl @)l

1B]<m=1

(3.2)

holds for a.e. & € Q and every £ € RY;|a| < m.

Definition 3.3 Let gq. ca, ¢(/3) and wy be as in the foregoing Definition 3.2. Moreover, let g, € L)’ for
|l < m—1,¢9(a) = ¢(a)/(g(a) = 1). We say that the coefficients A, satisfy the growth conditions of type
(C') if the following estimates hold for a.e. z €  and every £ € R* :

(i) For || = m,

[Aa(z,6)] < V2 (2) [yam tea 3 v 16T +

1B]=m
(3.3)
! B
teo Y Wl @l P
18|<m~-1
(ii) for o] < m -1,
1 1
| A(z,6)| < wi‘z’(z)[aa(z)m 3 T @)l T +
|8)]=m
(3.4)
1 8
tea Y Wi @l
1Bl<m=1
Let us denote N
Kl=m-— ;— (3.5)

and suppose that k; > 0, i.e. mp > N. Due to Remark 2.3, we can - besides (2.8) — consider also
imbeddings of W™P(v, () into spaces C(w, ), i.e. for u € W™P(v,Q) (or for v € Wy*P(v,9)) it is

DPu e C(ws, ) (3.6)

for |B] < Ky and

sup ws(2) DPu(2)| < Ellullm pu 3.7
x

for |B| < k1, with ég > 0 independent of u € W™P(», Q). Taking into account also these imbeddings, we
can modify our foregoing growth conditions of type (4) — (C). For this purpose, let us write £ € R in the
form £ = (k, &), where & = {£g;|8| < K1}, and denote

h(z,Kk) = Z jws(z)Ep|- (3.8)
181< %1

If we denote by h(z,u(z)) the expression

Y lws(z)DPu(z)]

1Bl<x1
then it is, in view of (3.7),

|h(z,u)| < ellullm,p. (3.9)
for u € W™P(v, Q).
Definition 3.4 Let us use the same notation as in the preceding definitions. Suppose, moreover, that
Ja € LY(R) for |a| < k1. We say that the coefficients A, satisfy the growth conditions of type (D), if there
is a positive, continuous, nondecreasing function G(¢),t > 0, such that the following estimates hold for

ae z € andevery £ € RF:
(i) For |a| = m,
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| Aa(e,6)] < (:<h(ar,~nu§(m)[ya(w) tea 3 v (@)lEl ™ +

|B)=m
(3.10)
! 8
TR S (O
K <[B1<m -1
(ii) for Ky < o] <m =1,
o A o1
[Aa(z, )l < G(h(z,8))wd (2) |§al) + ca D vF (2)|Ep|ToT +
1Bl=m
(3.11)
L 8
tea Y W;'Fvlfﬂl%;’z'} ;
£ <|Bl1<m=-1
(iii) for |a| < K1,
[Aa(z, )| £ G(h(z, K))wa(7) [ﬁa(z) +ea Y val(o)lEal +
1Bl=m
(3.12)

DY wa(zncﬁv“”] :

K1<]1BI<m -1

Remark 3.1 It is easy to show that the growth conditions of type (D) contain the previous ones as special
cases (e.g., we set Gi(t) = 1 if k1 < 0 and, consequently, the set of £5 with |8| < k; is empty). Therefore,
we can concentrate on Definition 3.4.

4 Operator representation
Let us consider a boundary value problem for the partial differential equation
Au= fin Q, (4.1)

where A is the differential operator of the form (1.1). Let V be a closed vector subspace of the weighted
Sobolev space W™?(v, Q) from (2.1) such that

W5 (v, Q) SV C W™P(r,Q). (4.2)

The choice of V' depends on the boundary conditions, which appear in our boundary value problem.
Roughly speaking, V' consists of all functions from W™P (v, Q) which “satisfy the homogeneous boundary
conditions” - it is V = Wy P(v,Q) if we consider the Dirichlet problem for the equation (4.1), and it is
V = W™P(y,Q) if we consider the Neumann problem.
For j € N we shall write
D’u = {DPu;|B| = 5}.

Let

a(u,9)= Y [ Aa(z,u(2),..., D™u(z)) Dp(z)dz (4.3)
lal<m

be the form (linear in ¢) associated with the differential operator A.
Definition 4.1 Let ug € W™?(1, ) be a fixed function. A function u = ug + v, v € V, satisfying the
integral identity
a(uo+v.0) = [ Sa)otaie (4.4)
Q

for every ¢ € V, will be called the weak solution of the nonhomogeneous boundary value problem for the
equation (4.1)

Remark 4.1 In order to avoid tedious calculations with expressions invol-
ving the terms ug + v, D*(ugp + v), etc., we will suppose in the sequel that up = 0, i.e. instead of (4.4)
we will be looking for the weak solution of the homogeneous boundary value problem, i.e. for the function
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u € V satisfying the integral identity

a(u,g.o):/f(.r)ga(x)rl.r (4.5)
Q

for every ¢ € V. The reader should bear in mind that the simple shift © — wuy 4+ « transfers existence
results for the homogeneous problem to existence results for the nonhomogeneous one.

Lemma 4.1 Let the functions Aq(x,€) satisfy the growth conditions of type (A),(B),(C') or (D) (see
D¢ fimtions 3.1-3.4). Then the form a(u, @) from (4.3) is well-defined for any u, o € W™?(v, Q). Moreover,
there exsts a continuous positive function H(t) defined in [0, 0o] such that

la(u, )| < H(”ullm,p,v)”‘?allmm.u' (4.6)

Proof It is sufficient to consider the growth conditions of type (D)(see Remark 3.1). Then it follows
from (3.10) (for |a| = m) that

|Aa (2, u(z),...,D™u(z))| < G(h(z,u(z)))uo’l?(z) .

: [lga(-t)l + ¢q Z Vgr(z)lDﬁ"(z)’P_l'*'
1Bl=m

L 8
+cq Z u,v[’;_r(.'L‘)ID‘Gu(z')]gLiJ2
w1 <|Bl<m -1

and consequently

/ |Aa (z,u(z),. .., D™u(z)) D¥p(z)|dz <
Q

< [ 6 e w@) () D@ lgalo e +
Q

(4.7)
1 1
tea 3 [ Glh(z,u(@) vk (@) Dp(x)|vf (2)| Du(e)| ¥ dz +
|,8|=mﬂ
1 1 8 m
+ ca Z /G(h(z,u(z)))u&"(z)|D"¢(z)|wﬁ” (z)|DPu(z)]*" dz.
s<lBlSm=19
It follows from the monotonicity of the function G and from (3.9) that
G(h(z,u(z))) < G(el|ullm,p.)- (4.8)

We will estimate the integrals in (4.7) using (4.8) and the Holder inequality with the exponents p and p':

/ |Ax (z,u(z),. .., D™u(z)) D*¢(z)|dx <
Q

< Glelllimp)ID*ellp,va |19alle + (4.9)
Byl s S
tea 3o DML +ea D IDPulllyy ]
18l=m 1 <|B|<m -1

Since we have ||Dﬁu||,,_,,ﬁ < ||u|lm,p, by definition of the norm in W™?(v, ) and ||Dﬁu||q(ﬁ)'u“j < épllullm,pw
due to Hypothesis 2.1, we obtain from (4.9)

[ 140 (@u@). ..., D™ut2)) Dg(w)ld <
4 (4.10)

< ID%ellpva Halllllm pe) < 1lln,p,0 Ha(lltelmp,0)

for |a| = m, where H,(t) is some positive continuous function.
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A similar estimate can be derived by analogous arguments for K; < || < m — 1 from the condition
(3.11) (notice that we use the Holder inequality with the exponents g(a), ¢(c)’).
Finally. for |a| < k. we use the condition (3.12) which leads to the estimate

/ |Aa (2 u(z), ..., D™u(z)) D p(x)|dx <

< / G (b2, u(2)))wa(2)] D*(2)|dal 2)ldz +
]

+ea D [ Glh(z,u(x)))walz)| DVp()|vs(z)| D u(x)Pde +
1Bl=m g

tea Y G (h(z, u(z))) wa(z)| Dp(2)|wp(z)| DPu(z)|?Pdz.
K1 <A<m-1q

(4.11)

Since D% € C'(wq, ) for |a| < Ky (see (3.6)), we obtain from (4.11), (3.6)

/ [Aa(z, u(3), ..., D™u(2)) D"p(x)|ds <

< Glelluflmpw) - sup |wa(z) Do ()| [Ilﬁalh + (4.12)

tea 3 IDPuE,, +ea Y nD"uu:}‘;;,w,].

1Bl=m k1<|Bl<m-1
Now, using the fact that sup |wa(z)D@(z)| < Eall@llm.p,v for |a] < &1 (see(3.7)), we obtain from (4.12)
z€Q

an estimate of the form (4.10), but for |a| < k.
Since

la(w, @) < Y~ [ [Aa(z, u(z),.. ., D™u(z)) D*¢()|dz,
|a|§mn

we finally obtain the estimate (4.6) taking
H(t)= Y Hat).
Jo]<m

Since a(u, ) is linear with respect to ¢, the expression a(u,-) represents the value of a continuous
linear functional F € V* (the dual space):

a(u,9) = (F¢) (4.13)
(here (-,-) denotes the duality between V* and V). It follows from Lemma 4.1 that
1Fllve < H(llullv). (4.14)
The dependence of F' on u (cf.(4.13)) will be expressed by writing
F =Tu.
Hence we defined the operator T : V — V* by the relation
a(u,9) = (Tu, @), v,p€V. (4.15)

It follows from (4.14) that
ITwllv- < H(l|ullv)

which means that the operator T is bounded (i.e. T maps bounded sets in V onto bounded sets in V*).
Using the properties of the Némytskii operator acting between weighted spaces we are able to prove
also the continuity of T'.
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Proposition 4.1 Lct the functions A, = Aq(7, ) defined on Q X R* satisfy the (‘arathcodory conditions
and one of the growth conditions of the type (A),(B),((') or (D). Then the operator T': V — V* defined
by (4.15) is bounded and continuous.

The proof follows the ideas of the proof of Theorem 3.5 in [3]. Let us only emphasize that due to our
assumptions we can identify the space V with a closed subspace of the product space

P= 1] xs (4.16)
Bl<m

where

Xp = LP(v,92) for |B] = m,
Xp = L9 (w5,Q) for kg < Bl <m—~1, (4.17)
Xp = C(ws, Q) for |B] < K1.

Note that K =m-— % and if k; < 0 then we use only the first two spaces in (4.17). Let us also recall

that the norm in C'(wg, ) is defined by (2.11) and in fact it is the L*°-norm of wgu.

Remark 4.2 According to the definition of the operator T (see (4.15)) a function u € V is a weak solution
of our homogeneous boundary value problem for the differential equation (4.1) if the identity

(Tu) = [ fa)pta)is (4.18)
Q

holds for every ¢ € V. Moreover, we can suppose that f € V*, replace the integral on the right-hand side
of (4.18) by (f, ¢) and look for u € V satisfying

(Tu, ) = (f, ) (4.19)
for any ¢ € V. Since (4.19) can be rewritten as the operator equation
Tu=f (4.20)

for our operator T : V — V*, we thus obtain a more general setting of our problem: “Find v € V such
that (4.19) holds for any ¢ € V.”

Remark 4.3 To be more specific, we will suppose that the right-hand side f in (4.1) is of the form

f=3 (-nklpeg,, (4.21)

lad<m

where the family {f,;|a| < m} satisfies the following conditions

fa € (IP(va, Q)" = LY (W77, Q) for |a| = m;
fa € (L"(")(wmQ))‘ = L‘J("’)'(wcl,_"(a)',ﬂ) fork; <|la|<m-1; (4.22)
fo € DNw31,9) C (2°(wa, Q)" for |a] < K1.

Then the operator equation (4.20) means that the integral identity

> [ Aa(z,u(z),..., D™u(z)) Dp(z)dz =
lal<m g

= ¥ [ r@)ppte)da

laj<m g
holds for every ¢ € V.

5 Degree of the mapping

Our existence results are based on the solvability of the operator equation (4.20). The main tool for
proving the existence of the solution of (4.20) will be the degree theory for generalized monotone mappings
developed by BROWDER [1] and SKRYPNIK [19]. However, in order to apply this theory, we need to
prove that the operator T : V — V* satisfies the so called condition a(V') (sometimes also called condition
(8)+)-
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Definition 5.1 The operator T : V — V* is said to satisfy condition a(V) if the assumptions

u,, — ug (weakly) in V for n — oo, (5.1)
lim sup(Tuy, uy, — up) <0 (5.2)
N=—NO

imply the strong convergence u,, — ug in V.
We will need several hypotheses.
Hypothesis 5.1 The compact imbedding
Voo WP, Q) (5.3)

holds.

Remark 5.1 Note that the symbol » means {1,;|a| < m} in the space on the left-hand side in (5.3) and
{Va:]a] < m — 1} in the space on the right-hand side in (5.3). The imbedding (5.3) is a natural one. It
holds in the case of classical Sobolev spaces (i.e. if v4(z) = 1,|a] < m) if Q is bounded and its boundary
J is lipschitzian.

Let us denote
H’"'l'q(w,ﬂ) = {u; DPy € ‘Xﬁslﬁl <m-— 1}7

where Xp are defined in (4.17).
Hypothesis 5.2 The compact imbedding
V oo H™ 190, Q) (5.4)
holds.
In further hypotheses, we shall write the basic vector £ = {£3;]|6] < m} € R¥ in the form
&= (xm,0),

where

¢ ={¢p; 18 = m} € R with (5 = &3,
n={ng;k1 < Bl < m— 1} € R" with 75 = &,
Kk = {Kg; || < Ky € R* with kg = £

frky=m-— % < 0, we shall write simply

£=(m0)
and the same notation will be used if it will be unnecessary to distinguish £5 with |8| < x; and £ with
18] € [k1,m —1].

Hypothesis 5.3 Let G; be a continuous, positive, nonincreasing function on [0,00[,G2 a continuous,
positive, nondecreasing function on [0, 00[. We shall suppose that for every £ = (k,7,() € R* and for a.e.
z € Q, the following ellipticity condition holds:

Z Aa(xvnv 7, C)(a 2> Gl(h(z»n)) E VB(“)'CﬁIP -

laj=m 18l=m

- Gyh(z,K)) D wp()lme"®

m<|BlEm-1
where h(z, k) is defined by (3.8). If k1 < 0, we put GG1(t) = G3(t) = ¢ with ¢ a positive constant.

Hypothesis 5.4 We shail suppose that the differential operator A from (2.1) is monotone in its principal
part, i.e. for every (n,¢) € R, (9,0) € R* with ¢ # (, and for a.e. z € Q, the following monotonicity
condition holds:

[Aa(z;1,¢) = Aa(z;1,O)(Ca = &) > 0. (5.6)

Hypothesis 5.5 The set  has a finite Lebesgue measure.

13
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Proposition 5.1 Let flypothcses 5.1 - 5.5 be satisfied and let the cocfficients A, = Aa(x,€) satisfy the
growth conditions of type (D). Then the operator T defined by (4.15) satisfies condition (V).

The proof follows the ideas of the proof of Lemma 4.4 in [3].
Remark 5.2 The properties of the mapping T : V — V* just derived allow us to introduce its degree

Deg[T; B, 0) (5.7)

with respect to the ball Brp = {u € V;||2|lmp, < R} and the point 0 € V*.

For details concerning the degree (5.7) see SKRYPNIK [19]. In the foregoing steps we have shown that
Deg[T; Br, 0] is well-defined and has the properties stated in [19].

6 Existence results

In this section we present several existence results concerning the weak sol-
vability of homogeneous boundary value problem for the equation (4.1). Recall that the right hand side f
is assumed to be of the form (4.21). Recall also that the results of this section can be easily extended to
the case of nonhomogeneous boundary value problem (cf. Remark 4.1).

Let us point out that we dealt only with the most general growth conditions of type (D) (see Definition
3.4). However, existence results hold also (with obvious modifications) for the weaker growth conditions
+— compare with Remark 3.1. For the simplest growth conditions of type (A), the existence of a (weak)
solution was proved (for the Dirichlet problem) in KUFNER and OPIC [13] (see also KUFNER and
SANDIG [14], Section 17).

Note also that © may be possibly an unbounded domain in RN. However, we have to assume that
meas § < oo.

Theorem 6.1 Let T : V — V* be defined by (4.15), the coefficients A,(z, &) satisfy the growth conditions
of type (D) and the right-hand side f is of the form (4.21). Let us assume that Hypotheses 5.1 - 5.5 are
satisfied and, moreover, assume that there ezists a number R > 0 such that

Z [Aa(z,u(2), ..., D™u(z)) — folz)]|D%u(z)dz > 0 (6.1)
lal<m g

holds for every u € V, ||u|lmp. = R.
Then the boundary value problem for the differential equation (4.1) has at least one weak solutionu € V
such that ||ulyp. < R.

Proof Let us introduce the operator Ty : V — V* by
Tyu=Tu- f.
Then the condition (6.1) can be written as
(Tyu,u) > 0. (6.2)

If there is u € V with ||u|mp, = R such that Tyu = 0, then Tu = f and our assertion is proved (cf.
Remark 4.3).
If there is no such » € V' then condition (6.2) and Theorem 1.3.4 in SKRYPNIK [19] imply that the

degree of Ty satisfies
Deg[Ty; Br.0] = 1.

But then it follows from the basic property of the degree that there exists at least one u € Bg such that
Tyu=0,ie.
Tu=f.

Remark 6.1 A useful tool in the Leray-Lions theory of monotone operators is the concept of coercivity.
An operator T : V — V* is called coercive on V if
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(Tu, u) _

lim (6.3
lhelly —os [ullv )

Obviously, this condition can help us to overcome the difficulties arising if we would like to verify the
condition (6.1). Therefore, let us introduce an additional assumption.

Hypothesis 6.1 Suppose that there are positive constants 1, ¢z, c3 such that the following coercivity con-
dition holds for all £ € R* and a.e. = € Q:

Z Aa(zaf)fn 2 Z ”a(z)lfalp"'

|a|<m |al=m (6.4)

+ c2vp(z)|€o|” — 3,
where O is the zero multiindex (0,0,...,0).

Lemma 6.1 Let Hypotheses 5.1 and 6.1 be fulfilled. Then the operator T : V — V* defined by (4.15)
satisfies (6.3).

Proof It follows from Hypothesis 5.1 that the following imbeddings hold:
V oo WmTP(y, Q) — LP(ve, ).

Applying Proposition 4.1 in LIONS [16], we obtain that for any ¢ > 0 there exists ¢(¢) > 0 such that for
every u € V
lellm-1p0 < elltellmpw + c(e)llullpues

Y. [ ID"u@)Pua(a)dz <

laj<m-1g
< op—lg [z /|D“u(x)|”ya(:c)dz+ E /IDau(z)|pVa(3)dz +

laj]=m q lal<m—1g

+2”‘]c(e)/|u(z)l”ue(a:)dx.
Q

Consequently, we obtain that for £ >0 small (0 < & < 2!77) there is a constant ¢4 > 0 such that

z /|Dﬂu(z)|pua(z)dz < eq( Z /ID“(:‘)‘pVa(l‘)d‘t‘*’

lal<m-10 lod=m g
+ [ lute)Pve(=)de)
and hence a
Nullps = Y ID%ulE,, < s ( > 1D, +
lal<m lal=m
+llulip e )

with ¢s > 0 independent of u € V. This inequality together with (6.4) yield

(Tu,u)= Y / Ao (z,u(z), ..., D™u(z)).D*u(z)dz >

lajl<m g
20 3 [ra@NDua)Pde +co [re@lutarrds - e3>
lal=m Q
> min(ey, ¢2) ( > D, + ||“||,’§,u9) -c32
loj]=m

> mm(cl,cz)”u"’, e

1PV
s m,p,va

and since p > 1, we have immediately (6.3)
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Remark 6.2 Instead of (6.4) we can also use the modificd coercivity condition

S A6 > D valz)lEal” +

la|<m laj=m (6.5)
+ caw(x)|o|® — 3
with ¢ > 1 and a suitable weight function w = w(z) provided the imbeddings
Vo WP, Q) — LY(w, Q) 16.6)

take place. Indeed, similarly as in Lemma 6.1 we obtain that

Y [ Prala)dz < es | 3 / |Du(z)Pva(z)dz+

lal]<m=1q lal=m g
+( [ lu@lota)dn)?
Q

and consequently

lullf p < esC Y ID%ull?,, + llullf.)- (6.7)

lal=m

Due to the second imbedding in (6.6) we have

1
P
llullgw < colltllm-1,p0 = c6 ( > IID“"IIP,VG) )

|laj]<m—1

which together with (6.7) imply that the expression

S Dl + llulz. = Nl

lal=m

defines a norm in V' equivalent to |||ul||m p,v-

It is
(Tw,uy>e1 Y [ va(e)|D*u(z)Pdz +
lal=m g
+ar [ lu@)fto@s - e 2 (68)
Q

> min(er,e2)( Y 1D, + llulli) - e

lal=m

For p < qit follows from Young’s inequality (in the form ab < "f—r+%’- withr=1,a= (fa |u(z)|‘7t.,v(:p:)d:t:)}v2 =
llullgw, b=1) that
p
flullf. < Ellullg,w +er. (6.9)

Thus we obtain from (6.8) and (6.9) that

(Tu,u) > min(cl,cg)< > IDulp, +

|a|=m

q
+ ;"“"Z’,w - 03) >
> cof||ulllP ~ €10

which again implies (6.3).
So we have the following result.
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Theorem 6.2 The boundary valuc problem for the diffcrential equation (4.1) in V has for cvery [ € \/:' at
least onc weak solution w € V' if we replace in Theorem 6.1 the condition (6.1) by the cocreivity condition
(6.1) or - provided the imbeddings (6.6) hold with ¢ > p - by the modified cocreivity condition (6.5).
Proof Since (6.4) or (6.5) imply (6.3), we have that

(Tyu,w)  (Tu— f,u) >

Feelfn p - el p.o

s (Tuw)  [Slvellwllnpy _
T Nl pe llelln,p.0

_ (Tu.u)

= —_— = ys — 00 if llu Py — 00
Tl ~ V1 b
(f € V" is fixed). Consequently, the condition (6.1) is satisfied for R > 0 large enough and the assertion

folJows from Theorem 6.1.
a

7 Remarks and examples

Remark 7.1 A comparison of the growth conditions mentioned in Section 3 with the growth conditions
in 3], Subsection 3.2, gives a good illustration of the broader possibilities offered by the method described
here. While the use of spaces W™P(v, Q) in [3] with no weights in lower order terms (more precisely, with
' weights vo(z) = 1,|a] < m — 1) allowed only changes in the order of the growth (like 3 [€5]™® with
K1 <|Bl<m
T3 > p), here we can both change the order and introduce weights different from v, = 1, i.e. introduce
degeneration or singularity (see terms like 3 wy(z)|€5]9¥) in (3.12)).

s1<|Bl<m
Let us consider e.g. the operator A from Example 5.7 in [3] and the Dirichlet problem:
(Au)(z) = (-1)" Y D°(v()| Du(z)]~*Du(z)), (7.1)
laj=m

with the weight function v = v(z) from (1.8). Then we can add, according to [3], lower order terms (say
of order 2m — 2) of the form

(=)™ Y DP(Du(z)""2DPu(x)) (7.2)
IBl=m~-1

with 1 < ¢ < 2p—1 for 1 < p < 2. However, the approach described in this paper allows to add eg. a
lower order term of the form

()™ Y DA(w(x)| D)2 DPu(x)), (73)
1Bl=m~1

where the weight function w has a similar structure as v, i.e.

1 for z; <0
w(z) = { z;‘°(1 —z)m for z; > 0,25 > 0,
|z2]#0(1 = z1)* forz; > 0,2z, < 0

with values Ao, 70, o connected with the values p, g, A,7, u. Roughly speaking it must be
o> il o
p p

(with A from (1.8)) and similarly also for g a ¥o.

Remark 7.2 It should be emphasized that the decision about the weight functions v4(z) which appear
in the definition of the space W™?(1,Q) in terms of lower order (Ja] < m — 1) depends on th.e weight
functions va(z) for |a| = m (i. e. appearing at the derivatives of order m). An important role is played

here by Hardy-type inequalities, i.e. inequalities of the form

q N
<n/|v(x)|qw(z)d:c) <c n/z

1=1

g—:(z) pu,(z)dz) . (7.4)
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We proceed in the following way: We use inequality (7.4) (say, for v € ('§°(R), if we consider the Dirichlet
problem) so that we have the imbedding

Wy P (v, Q) — LY(w, Q). (7.5)

Morcover, we assume that the imbedding (7.5) is compact.

Now, we take for v a derivative DPu, 3 fixed, |3| = m — 1, and choose for the weight functions v,(x)
on the right-hand side of (7.4) the weight functions v,(z),|a] = m, appearing in the definition of the
space W™P(1, Q) (see(5.3)). More precisely, if we denote, for 8 = (81, /2,...,0,),|8] = m — 1, by 8(2)
the multiindex a = (a1, a3,...an) with a;, = 3, for i # j and a, = f, + 1, then |a] = m and we choose
v(£) = vg()(z). Then we can determine the weight function w(r) on the left-hand side of (7.4) as vy(x) if
¢ = p (with vg(z) appearing in the definition of the space W™P(v,Q)) and as wg(z) if ¢ = ¢(8) # p (with
wp(x) appearing in the definition of the space H™19(w, ), see (5.4)).

By this way we determine the weight functions vg(z) and wg(z) for |8| = m — 1, and analogously we
determine the weight functions appearing at the derivatives of order m — 2 etc.

Example 7.1 Consider again an operator A whose principal part is of the form (7.1), i.e.
Au(z,6) = Va(z)lfal,’_2fm la| =m

with v4(z) = v(z). Let Q be a plane domain, @ = {(z1,22);0< z; < 1,0<
< z3 < b} with 0 < b < 00, and choose the weight functions vo(z) in the form

Va(T) = Va(z1,22) = zé\, A a real number.

In this case the conditions ,
va "' € Llloc(Q)y Va € Llloc(Q), lal <m

are obviously fulfilled. Let us consider, for simplicity, the Dirichlet problem. Then the basic space V is
just Wg"P(v,Q) and we can make all considerations for v from the dense set C§°(£2).
The Hardy inequality

1

b . 5
v

(/ |”(z1»zz)|"z'z‘dzz) <e (/ IaT(xl,zz)l”té\dzz) (7.6)
0 0o ?

holds for all v € C§°(2) with a constatnt ¢ > 0 independent of v and independent of z,, provided
[

A 9.4

#p—1 and p>A;+;—q—l (7.7)

(see Example 6.8 in [18]).
(i) Let us determine the weight functions vg(z),|8| = m — 1. Take ¢ = p in (7.6), i.e.

A#Ep-Lpu>A-p; (7.8)
it follows from (7.6) that

1

b
|v(2)lPw(z)dz = ( Iv(zuzz)l‘"ﬂc“dzz) dz; <
/ [\[erir
1 /6 o » )
kel A (7.9
<c? (/ (0/ lazz(zl,xz) :czd::z) d.’t]) <

0
pu(z)] dz.

50/[

This is inequality (7.4) with w(z) = z4,¢ = p, which indicates that if we put v = DPu,|B] = m — 1, we
can choose

P
2@ e+ |{f—;(z)

vg(z) = z5.

Hence, we have
D%y € LP(vy, Q) with va(z) = 23 for [a = m,

DPu € LP(vg, Q) with vg(z) = ¥ for |f] = m — 1,
where A and p satisfy (7.8). Analogously we can show that
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DYu e LP(1.,, ) with v,(2) = a$ for [y|=m -2

provided
p#Ep-1L84>p-p,
ete. By this procedure, we construct the space

WmP(v, Q)

or more precisely, the space Wg*?(»,Q). Let us emphasize that the imbedding correspf)ﬂdillg to the in-
equality (7.6) is compact (see Example 7.10 (ii) in [18], where the case A < p—11is discussed; the case
A > p— 1 follows similarly by using Example 6.8 (i) in [18])). Hence, we have simultaneously the compact

imbeddin,
i g V= W(’,""’(V,Q) e W‘;"-]'p(ll,ﬂ,)-

(ii) If we would like to determine the space H™=17(w, Q) (satisfying Hypothesis 5.2), i.e. the weight
funétions wy for g # p, we have to differ two cases.

(a) 1 < ¢ < p < oo. In this case we obtain again a Hardy-type inequality similar to (7.9). Namely, we get

vxqwzz% c ’ :r::z:i .10)
(Q/I(N()d)s(ﬂ/[ ]u()d) (.10

with w(z) = z4. But now u is determined by (7.7), i.e.

0
81‘2

v
9z, ")

g \—"(z)

DPy e LIP)(wp, Q) for |Bl=m -1
with wp(z) = 75, 4 > /\’%+%—q—1.

Indeed, using (7.6) and the Hélder inequality with the exponent r = E > 1, we immediately obtain formula
(7.10).

Similarly we can determine wg(z) for |8} = m — 2,m — 3 etc.
(b) 1 < p < g < oo. In this case we cannot use the Holder inequality. We have to use more comPlicated
procedure described in [18], Subsection 12.13. We will not go into details here. Let us o'n!y mentlon‘ t'hat
we again obtain an inequality of the form (7.10) with w(z) = =4 but now under the additional condition

and with »
"> /\E.

(iii) Due to these investigations, we can consider lower order coefficients of the form
Ap(z,€) = 2416l %€p for |Bl=m -1

and similarly for |8] < m — 1, with y depending on ¢ and p. .
Remark 7.3 In Example 7.1, we investigated the Dirichlet problem on the plane domain © =)0, 1[x]0, b[
and considered the Hardy inequality (7.6) for functions v € C3°(f). Let us point out that due to the fact
that in (7.6) only the integral ]0, b[ for z, is of importance, the same results can be derived if we consider
Dirichlet boundary conditions only on the top and the bottom of our rectangle , i.e., for (z1,22) € 09
with z; = 0 and z; = b.

Moreover, we can consider Dirichlet boundary conditions only on the bottom, z; = 0 (or only on the
top, £z = b) but then we can consider only values A such that A < p—1(or A > p—1) instead of A # p—1.

Let us add one simple example illustrating the modified coercivity condition (6.5).

Example 7.2 Let us consider the Dirichlet problem for the second order equation of the type (4.1), where

Moo
(Auw)(e)= -3 5 (:«(z)
=1 '

(here we use “usual” indices instead of multiindices). We have

—2
501) Fo@l@l ()

o
oz,
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{A,(.r,fu,fu,....fN) = n(@)|&P2 fori=1,2,...,N, )
Ap(x. €0, €1y - - -, EN) = w(z)|€ol" %60

with p,¢ > 1. We use the space V = WJ"’(V.Q) with » = {vg.11,...,vN} where g is chosen in such a way

that the compact imbedding
WP (1, Q) —— L7(1, )

holds. The coercivity condition (6.4) has the form

N N
DAz o, bne N 2 0 Y m(@)IE +

=0 =1

+ cavo(2)|ol” - c3,

i.e., for our special choice (7.11).

N N
Y n@NEP +w(@)éol? 2 e Y (@& + cavo(2)|Eof” - c3. (7.12)

1=0 1=1

Since there are no obvious connections between w(z) and vo(z),q and p, we cannot guarrantee that (7.12)
is fulfilled for every £ € RV,
On the other hand, the modified coercivity condition (6.5) is fulfilled. Indeed, it has the form

N N
z Al(x'€0$€h s 1€N)€l Z &3] z I/‘(E)IE,IP +

1=0 1=1
+ cow(z)|€o|? — €3

and it is obviously satisfied with
1 =C = 1,03 Z 0.

To assure the existence of a weak solution by means of Theorem 6.2, we have to suppose that the Hardy-
type inequality (7.4) holds for every u € V = W(} ?(v, ), that the corresponding compact imbedding

WP (1, Q) o L(w, Q)

holds, and further that ¢ > p.
If we suppose that the following inequality holds:

n/ (=) Pro(e)ds < gj n/ {;’—:(z)

then we need not to assume that p < ¢. Indeed, since the right hand side in (7.4) is an equivalent norm in
V', we have that

’ vi(z)dz, (7.13)

N Ou
(Tu,u) = Z / A, (z, u(z),Vu(z))b?(z)dz +

i=1 0

+/Ao(z,u(z),Vu(z))u(z)da: =
Q

2/

> cllully + llullfo > cllully,

ou
az;(z)

’ n(z)dz + / Ju(z)|*w(z)dz >
Q

and hence (Tu,u) ~

m — =

lully—oo flullv
Note that in (7.13), we considered a special family v of weight functions, i.e., v = {vo.¥1,.. L UN}
with vy = v; = ... = vn. There are several results concerning the validity of inequality (7.13), called also
the weighted Friedrichs inequality. See e.g., EDMUNDS and OPIC [6] for vg, v, having singularities or

degeneracies only at the boundary and satisfying certain (rather complicated) additional assumptions.
a
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